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ABSTRACT

Though one is led to believe that program transformation systems which perform source-to-
source transformations enable the user to understand and appreciate the resulting source program,

this is not always the case. 'Transformations are capable of behaving and/or interacting in unex-

pected ways. 'Ihe user who is interested in understanding the whats, whys, wheres, and hows of the
transformation process is left without tools for discovering them.

I provide an initial step towards the solution of this problem in the form of an accountable

source-to-source transformation system. It carefully records the information necessary to answer

such questions, and provides mechanisms for the retrieval of this information. It is observed that
though this accountable system allows the user access to relevant facts from which he may draw

conclusions, further study is necessary to make the system capable of analyzing these facts itself.
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10 Tables

ac-count-a-ble adj. I subject to giving an account
2 : capable of being accounted for

ac-count vb. vt I : to give a report on
vi I : to furnish a justifying analysis or explanation - used with for

-Webster's Seventh New Collegiate Dictionary

We might suppose that by the combined action of appropriate forces
any material form could be transformed into any other: just as out of
a 'shapeless' mass of clay the potter or the sculptor models his artistic
product: or just as we attribute to Nature herself the power to effect
the gradual and successive transformation of the simple germ into the
complex organism. ... So the living and the dead things animate and
inanimate, we dwellers in the world and this world in which we dwell
... are bound alike by physical and mathematical law.

-D'Arcy Thu.npson



Chapter One

Source-To-Source Transformation Systems

PR ROGRAM TRANSFORMATION SYSTEMS have been produced which claim to ameliorate the
problems of incfficient programs caused by modular programming strategies, in itial lack of

attention to efficiency (for indeed, during the programming process, construction and verification
should come first), or perhaps just bad programming style. These transformation systems may

be implemented automatically or manually, and may do their work at compile time or before.

For example, an optimizing compiler is an automatic transformation system which performs its

work at compile time. In contrast, a source-to-source transformation system is an automatic pre-

processor whose output may then be compiled on the desired machine. Alternatively, the program-

mer himself may be responsible for producing efficie- t code, and, following the construction and

verification of his program, must rewrite any part which does not meet its operational standards. In

this chapter I offer my opinions and suggestions regarding the current suite of program transforma-

tion.

1.1. Introduction

Program transformation should be a process which is independent of compilation, and which,

though pcronned automatically, can be guided by the programmer. A source-to-source transfor-

mation system provides a programmer with canned sets of transforrmations which he may invoke

and afterwards observe the effect of. I am interested in a more interactive approach in which the

programmer is able to intelligently select those transformations which are relevant and effective

11
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12 CIIAPILR ONE SOURCI-"'O'-SOUR'i I RANSI OiCMAi ION SYSI iMS

for the particular situation he prescnts. Furthermore, the programmer ma designate only certain
parts of the program for transformation (for example, he may choose to apply optimi/ing transfor-
mations to code which forms a bottleneck at execution time). In order to intelligentl make these
decisions, the programmer must ha\e the freedom to experiment with \ariou., sets of transf orma-
tions to his program, be able to observe their outcomes, and serify that indeed they do the job he
requires. The advantages of this approach are discussed in [ILoveian 1977].

Although source-to-source transfonnation systems allow programmers to perform an analysis
of the results, they pro\ ide no mechanisms for such analyses: the programmer must study the
output himself to discover what transformations, if any, occurred. Furthennore. the effort needed
to understand why a transfornation applied (or more often, why one did not) is significant and
prohibiti\ e. Without mechanisms to aid the programmer in his study of the result of the transfor-
mation process, many of the advantages ofa Source-to-source transformation system arc lost.

Since I had to develop a source-to-source transformation system one Summer without the aid
of any sort of mechanism for evaluating the cflectiveness of transformations, I have a great many
suggestions to offer as to what sorts of tools would be Valuable for doing so. It was often necessary
first to learn if there had been any change in the argument program at all, that is, if any tiansforma-
tion had succeeded in applying. A transfonration system which would report whether or not it has
done anything would be capable of providing this infonation. Then, once it had been determined
that something had happened, it was necessary to discover what. 'llicn where, then when, then why.
And there was always why ot? I wished I had a transformation system which would automatically
account for its decisions: an accountable source-to-source transfimnation system.

I.l.I. Statement of Thesis

o Source-to-source transformation systems which produce changes in the user's program without
any explanation or justification of these changes in some sense "violate" the user's code.
To verify that the transfonnations performed were those expected or desired, the user must
manually examine the resultant code. Furthermore, understanding why such transformations
were or were not performed requires manual examination of the transformation system itself.

o A source-to-source transformation system which can be queried as to what, where, when, and
why it did whatever it did can aid the interactive transformation of a program.

* The development of such a tool is feasible.

1.1.2. Organization of Dissertation

So far in this chapter I have given an overvicw of the problem I wish to address, and only
a hint of the proposed solution. In the remainder of this chapter I will discuss the uses for and
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advantages of source-to-source transfi)rmation systems, then go over again in some detail (and

with examples) why many of those advantages are not rcaliz.ed. Chapter Two describes a method
for regaining these advantages: making the system accountable for its actions. In that chapter 1
will define exactly what I mean by an accountable transformation system, then present the design
of such a system. Chapter Three begins our discussion of the implementation of the system by
introducing the source-to-source transformation system which will be made accountable. Finally,

Chapter Four follows the decisions and revisions involved in implementing an accountable source-

to-source transformation system. The bulk of the thesis lies in this chapter, since only in attempt-
ing to implement an accountable system did many of the subtle difficulties in doing so present
themselves.

In this dissertation I am particularly interested in discussing source-lo-source transformation
systems, although I admit that if someone wished to argue the point, I would have a hard time

convincing him there was any difference in transformation systems which are source-to-source and

those that are not. What is object code to one compiler may be source code to another: however, I
will assume the popular definition of source code as a high-level language, and make no claims as
to whether or not it is object code as well. In this discussion, then, it will be assumed that when I

speak of transformation systems, I mean sotfrce-lo-source transformation systems, unless explicitly

stated otherwise.

1.2. Motivation And Uses For Transformation Systems

Transformations allow one to automate almost any kind of systematic change to a program.
While some systems are written with a particular transformation set "built-in" because they are
meant to pci form a specific task, others are written more modularly and may be used with any
of a number of different canned transformation sets. General-purpose transformation systems
exist as well: these conic with a special language in which the programmer himself can write the

transformations he wishes to be applied to his program.

Source-to-source transformation systems provide access to the resultant code in a way that
other transformation systems do not. The output from such systems may be studied, modified,
or run through the transformation system again before any compilation is done. Thus, whether
the programmer uses a set of canned transformations or "rolls his own," he is able to afterwards
observe the effects of each on the input code.

Source-to-source transformations may be applied to a program independently of the machine
the program is going to be compiled on. Since the system takes source code and produces source

code, transforming the program precedes any compiler activity. Thus the programmer has the
security of knowing that he can produce a more efficient program for any machine. Of course,

ccrtain transformations may be more or less effective depending on the target machine. 'Ilie pro-

ai
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grammer who is aware of these diffcrences may tailor his program to the appropriate machine, or to
several by generating all of the various versions that are required.

Currently available source-to-source transformation systems are capable of performing op-
timization, realization, and translation.

1.2.1. Optimization

By far the most common use of transformation systems is for the optimization of code.
A number of papers which describe standard optimizing transformations have been published
[Standish, et al 19761 [Allen and Cocke 1972], and some successful systems are in use [Kerns 1977]
Illoyle and Matz 1977] [Atkinson 1976]. No one will question dhe need for program optimization,
but what are the advantages of perf .ming optimizations by means of a transformation system?

1.2.1.1. Opens the Way For Interactive Oplitnization

Code generated by a source-to-source transformation system may be analyzed by the pro-
grimmer in order to determine what optimizations were performcd. lie is therefore able to un-
derstand to some extent exactly what transformations to the code arc causing any difference in
execution time. He can see which parts of the code are being modified, and which are not. On
the basis of these observations, he may write or use other transfonnations, or choose other pieces
of code to optimize. Because he has a better understanding of the optimization process, he can
therefore better control that process.

1.2.1.2. Simplifies the Compilation Task

By moving tie optimization process out of tie compilation process, a compiler writer is free

* to concentrate on code generation. In modularizing the entire program development process and
allowing compilation to be independent of optimization, we move closer to the possibility of

automatic generation of compilers.

As transformation systems evolve, one can imagine canned sets of transformations becoming
available which arc guaranteed to cure all programming ills. Fach set of transformations may
be keyed for use with a particular language, depending on the target machine. For example, all
Fortran programs to be run on an IBM 370/165 may use transformation set "IEII370FIXIT", while

*, lisp code to be run on a DEC-10 system will use tranformation set " BAZOI.A". Flach set would
know about the quirks specific to its target machine, and be prepared to put the source code into
te form best suited for efficient compilation on that machine.

-=K -WI J



§ 1.2.2 Alolivation And Uses For Transfonnaiion Systems 15

Or, better yet, let there be only one transformation set for each language. Thc Fortran set is
responsible for optimizing Fortran code. the Lisp set for lisp code, et cctera. Each set of transfor-
mations puts its source code into a tbnn suitable for efficient compilation. That is, there should be
it canonical set of transformations that every compiler expects to have already been performed by
the time the compiler gets the source code. Since every high-level language is not equally capable
of expressing all the possible optimizations of a piece of code. I will instead say: for each high-level
language, there should be a canonical set of transformations that every compiler for that language

expects to have already been performed. Then, it is the responsibility of the compiler to know the
quirks and idiosyncrasies of its machine, and to generate efficient object code for that machine. The
compiler may assume that the source code it receives has been optimized into the canonical form
agreed upon beforehand.

1.2.2. Realiz~ation

Although transformations which perform optimizations to a program have received more at-
tention than those which do not, other uses for transformation systems should not be overlooked.
One transformation system currently in use at Argonne National Laboratory [Boyle and Matz 19771
has a library of transforation sets which generate different versions or "realizations" of a single

prototype program. For example, given a Fortran program to perform some algorithm upon com-
plex numbers in single precision, it can generate an analogous program which performs the same
algorithm on real numbers in double precision. This is done by first applying a set of complex-to-
real transformations to the program, and then, using the output of that run as input to the next,
applying a set of single-to-double precision transformations.

This method may be used to generate realizations of a program which are geared to run more
efficiently (or perhaps correctly!) on a particular machine. The notion of providing portability and
reliability by program transformation is discussed in [Boyle 19761. A particular realization can be
thought of as a refinement of the prototype program: transformations may be written to refine
high-level programs into underlying representations [Standish, et al 19761.

1.2.3. Translation

'Transformations sets may also be written to translate code from one source language to
another IPitman 19791. These transformations are clearly non-trivial, and the set of programs to
which they can successfully apply may be very restricted if the languages are not similar. Syntax
transformations, however, should be simple and fairly straightforward.
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1.3. Inadequacies of Transformation Systems

Although in theory a source-to-source transformation system provides all the advantages given

above, in practice things turn out a little diffcrcntly. Considcr the tbllowing example:

A set of optimiting transformations was applied to a simple ILISP program to compute two

lists and append them.

(APPEND (MYMAPCAR (FUNCTION FOO) '(A B C)) (iAZ Z Z))

The optimized code returned by the transformations was:

(CONS (FUNCALL (FUNCTION FOO) 'A) (MAPCAR (FUNCTION FOO) 'i(B C)))

Understanding why this code replaced the input code Likes a bit of study. First off, die programmer
would need to remind himself of die definition of MYMAPCAR and BAZ. lie goes to his file and

looks them up:

(DEFUN MYMAPCAR (FUNARG ARG)

(COND ((NULL ARG) NIL)
((ATOM ARG) (FUNCALL FUNARG ARG))
(T (CONS (FUNCALL FUNARG (CAR ARG))

(MAPCAR FUNARG (CDR ARG))))))

(DEFUN BAZ (X Y)

(COND ((EQ X Y) NIL)
(T (LIST X Y))))

'ro figure out how these definitions together with the transformations in the set he applied worked
together to form the replacement code, his analysis might proceed like this:

"Oh no, I've been QUUXEI)! What happened to the call to APPEND? It's turned into a call to

CONS! How can that be?

"1 hmmm. Well, procedure integration has occurred. I guess. The definition of MYMAPCAR has
been expanded in-line, but since the second argument is known to be a list, the tests for nullness

and atomicity were eliminated, leaving only the CONS. But what happened to my BAZ function? I

certainly didn't give it any constants, so what makes it think it can go away? Let's see... If I expand

its definition in-line, I get a conditional whose first test is ( EQ Z Z ). 011, of course! 'liat must
be true, so it returns NIL. Then APPEND of something and NIL leaves that something, which
explains why only the CONS is left. Whew!"

'hat was only a simple example. Imagine trying to verify output from a transformation system
in which there arc several levels of procedure integration, hairy function definitions, obscure test

eliminations, and nested larmbda expressions that produce several layers of bindings one can't pos-

sibly remember and translate between all at once. If one must go through that sort of analysis for
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each piece of code in order to follow the activities of a source-to-source transformation system,

the advantages of being able to do so lose sonic of their appeal. The transformations applied to
the input program "do violence" to the user's code: it is often difficult or e~cn impossible to under-
stand why a transformation did or did not apply, and how the various transformations inteyacted to
produce the output program.

To understand what occurred during the transformation process requires a great deal of effort
on the part of the user. Fe must compare the input source with the output source to see where
changes were made. fie must look up function definitions to see how procedure integration took
place. To understand which transformations applied, he must have a good idea of the transforma-
tions attempted and what their prerequisites for application were. It may be impossible for him to
discover what transformations, if any, ahost applied, and why they didn't. Furthermore, without
careful study of the system itself, he has no clue as to the order in which the transfonnations
applied, and how this may have affected the final result.

In case the reader is not convinced, I include one last example (without cxposition) for him to
ponder over. The original program function..

(DEFUN EXAMPLE (FOO BAR BAZ)

(COND ((ATOM FOO) NIL)
((ISINDEXED FOO) (PROCESS-INDEX FOO BAR BAZ))

( ... (GET-r ,"  FO0) . )
(T ...

The resulting code:

(DEFUN EXAMPLE (FO0 BAR BAZ)

(COND ((ATOM FOG) NIL)

((AND (ATOM (CAR FO0))
(NUMBERP (CAR FOO)))

(PROCESS-INDEX FO0 BAR BAZ))
( ... (CAR FOG) ...
(T ...

Relevant function definitions:

(DEFUN ISINDEXED (X)
(AND (NOT (ATOM X))

(ATOM (CAR X))
(NUMBERP (CAR X))))

(DEFUN GET-PART (Y)
(COND ((ATOM Y) NIL)

((AND (ATOM (CAR Y))
(NUMBERP (CAR Y)))

(CADR Y))

I-
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(T (CAR Y))))

With some study and comparison of the two definitions of EXAMPLE gi'en here, we can eventually
see that they are equivalent, and determine what transfornations were applied to get the resulting
code. However, this can be a tedious process for the entire set of program functions, and one that
could be automated. I propose to aid the user in understanding the transformations performed
above (for example) by having available to him information about the changes made. 'lhc user
might ask where the (CAR FOO) in the resulting program came from, and the system would
answer that it came from the simplification of (COND ( T (CAR FOO) ) ). which was the result of
test elimination from the call to GET-PART which was expanded in-line.



Chapter Two

Design of An Accountable System

USTWIIAr is an "accountable" transformation system? We need to understand what is
meant by the term and how the characteristic of accountability might be used to solve tie

problems presented in the previous chapter. Then we may design and build such a system.

2.1. A Definition

An accountable source-to-source transformation system is one which records in some acces-
sible fashion the circumstances of application of any transformations it performs. That is, not
only does such a system return a transformed program, but it leaves behind a history of the trans-
firmation process as well. Mechanisms are provided which will allow the user to easily obtain
information from this history. Thus, a programmer might well receive direct answers to such
questions as:
* "What initial transformation (if any) occurred to start the chain of transformations performed

on this section of'code?"

, "What did this piece of code look like right before this transformation applied?"
e "What would this piece of code look like if this transformation had been turned orl'"

* "Which transformations applied at this point in the program? Why?"

9 "What transformations did not apply? Why not?"

* "Which transformations always applied?"

19
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One might wonder if this ability is possible only in a source-to-source transformation systcm,

or whether optimizing compilers and other transformation systems could be made accountable as
well. '[he point of an accountable system is that it aids the user in understanding why certain

decisions were made, where they were made, and what those decisions were. If we assume lhat such
information is useful, it is natural to then assume that the user is interested in studying the code of

the resultant program as well. I wish to make no claims about the amount of interest the typical
programmer has in object code, but I will admit that in theory, an), transformation system can be

made accountable. In practice, however, a source-to-source transformation system seems to be the
best candidate for such an improvement.

2.2. Motivation and Uses for an Accountable System

An accountable source-to-source transformation system makes all the advantages of a transfor-

mation system listed in Chapter One realistic. The output of an accountable system is not only
accessible but manageable, and the transformation process is rendered truly interactive.

2.2.1. interactive rransronnation

As mentioned in the section on source-to-source transformation systems, although such sys-

tems provide the programmer with access to the transformed code, for him to understand exactly
what took place requires that he invest a significant amount of time and effort. He must not only

compare input and output, but have a good understanding of the transfoirmation system itself. By

automatically recording and providing access to the information that a programmer needs to decide
if the transformation process accomplished all that he desired, we supply yet another tool for the
program development process. With the knowledge that such a tool is a~ailable. a programmer is

more apt to concentrate on construction and verification of a program first. and lea~e the problem
of efficiency until later. When its time comes, the user is able with the use of an accountable system
to direct the transformation process. It is the accumulation of such tools which smooths the way for

development of automatic program synthesis systems.

2.2.2. Debugging

An accountable system is a debugging aid in the sense that where a transformation may not

have had the intended effect, or the previous application of some other transformation caused this
one to fail to apply, the system could be queried as to why a given transformation did not apply, or

what the state of the program was at te point the user expcted the transformation to apply. The

.... d6
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answers would help the programmer to locate errors in the transformation set.

2.3. Related Work

Other systems have done some work in the line of accountability jl)ai is 1978], hut most of
them consist of little more than a simple trace-back of the computitions performed in the program.
A full or even partial trace of what happened has limited usefulness, however, and the thought
of having to wade through one is enough to deter all but the most desperate. What is really
needed is a mechanism whereby the available information about a colmputation is sifted through

and sorted, and then only the infomiation which is relevant is pissed on to the user. But even a
fancy trace system may do that much. I know of no extant transformation system Ahich makes
any serious attempt at understanding its own process and accounting for that process to the user.
Instead, developers of current transformation systems have concentrated their efforts oin ordering
the application of transformations, proving their transformations to be equivalence preserving, and
experimenting with various types of control for the systems [I mcman and Faneuf 19751 [Wegbreit
19761 [Gerhart 19751 INievergelt 19651 [Schwartz 19741 [Scheifler 19771.

2.4. Understanding the User's Needs

What information does a user need to understand the transformation process? We already
have some idea from working through tie two examples in Chapter One. Certainly die information
needed to answer the questions listed at the beginning of this chapter would be useful. Notice that
some of the questions asked information about a particular piece of code, while others requested
information about a transformation, That is, one might ask "What arc all the transformations that

applied to this piece of code?" or "Where are all the places in the code that this transformation
applied?" (or "was attempted". or "didn't apply"). The types of questions a person Aould ask
depend on that person's goals and reasons for using the accountable system in the first place.

Iet us then consider possible goals: Someone who was developing the transformational coin-
ponent of this system might wish to determine the effectiveness of a particular transformation or
be interested in following the interaction of Narious transformations. That person would tend to
have more questions regarding particular transformations. For example, die type of information
that would have been helpful to me in debugging would have been the ability to ask what trans-
fonnations did not apply, or perhaps, which transfo rmations always applied. On the other hand.

a programmer using this system to oplimizc his program would be more likely to ask questions
relative to specific pieces of code. For example, he might ask if a certain function was changed at

all. or why a certain transformation was able to apply to the piece of code of interest.
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liither of' these are valid approaches, and each of themn wais listed its a reason for using an
acCUuntahle systeml. IhUS. we wAill auemlpt to record in firniation which can be uIsed to answer
questioins that a n ofthse potent(il users Might haVe. In fact. I claim that the saine information is
necessairy to answer any of them, and that only their viewpoint differs.The information needed is:

(a) that a tranrsto nnat ion was attempted at somle point in the code, and whethier or not it muccess-
fully applied,

(b) what any piece of code looked like following any transformation;

(c things known i to be true (or false) at any given location in code:

Md how thle informyatioia in (c) caine to be known;

(e) for each individual transformation: what intist be true to enable successful application

(prerequisites), and what is true following a successful app lication.

From this information, I claim we call derive the answers to any of the questions that a user
might ask (which have been suggested so far).

2.5. The Design

I helieve that any mechanisms for recording \xhat goes on during thle transfonnation process
Should be independent of those mechanisms which pcrfonin the transformiations. T'hat is, an ac-
couintable transformation systemn can be view ed ats tw o separate processes. O'ne behaleS just ats cur-

rent transformnation systems do in that it decides when and where to perform tie transforimations,
tlin does So : thle other process stands by and quietly Awatches,, taing note (if all suchi decisions. Ibie
advantage Of this approach is that already extant tranisformation S Sstemls can he Made aIccoutatble

ith less; hassle, amid Furthermore, the di ision of' Libhior si mp lilies thle t.isk (f ci m tric t inrg an ac-

countable sy stem. I will occasionalls refer to the first process ,Is the -tlansfo Ilu,it1iii on i ponent",
and to the secmiod ats thle "aecotintable comiponent''. As wec i.\ill see in more detail later on, thle
accitinthlc component will he further diiided into twO sUh-ionpiincnts: a recoiding clement anid
at query element.

[Hie two proiesscs, \ ewed toiiehe r aippeair to thle user as a1 tran1sform~lationl '%Sstemn thatl is awareC
of its mil ac~tions", anld which c.1n thenl repiirt to the use r whai~t it did, step bi step. An interesting
%ariatiiin of this aipproach might be at s\stem that reported \\hli it did asi it did it. rather than

wain nil the enId to prok ide ieI riser w itir infitrnirtion. Althoughb thlis mnethod has1' "orn merit
* , nd desersL 10 t he studied, its one dear dis;adsaint,mee is, that it Vi\s site USer less Lhoke aout what

in i umam ~tton to receis . [bough hie might base\ thle Option helo nc the piiess Iea o Specify what

ty pes of decisions to be told about, it wkould be dillictilt for hirm to tisk for othert infiirmotion based
* . on what lie -itw during the pirocess. Fu rthemiuiie. if' thle programi to be tiansft tied is cer) large.

or the accouintalble System is %Cry Slow, thle user nm not wish ti "w ait ammd- for the in formnation
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he requested to be displayed. Instead, while the transformation system is cooking, the programmer

can go off and have a cup of tea. Upon their mutual return, he may ask for whatever inlormation

he desires, decide on the basis of that information what else he wishes to see, then immediately
study that information as well. One reason to favor having a "real-time" report would be if on the
basis of information reported, the user could then opt to change the course of the traitsformation
process. This feature is beyond the scope of our discussion of an accountablc systcm, though 1 will

venture to suggest that such decisions perhaps should be automated; that is, thc, should be part of

the transformation system itself.

For a system to account for its actions (and those actions are the transformations it does or

does not successfully performn), it must keep some sort of record of what it is doing as it executes,
and be able to later access that record in a meaningful way. We must thcrefore

(1) collect and record the relevant information in some reasonable fashion, and

(2) access, process, and return that information to the user.

lhese tasks will be performed respectively by the recording and query elements of the accountable
component.

2.5.1. The Recording Element

Let's again go over the information we decided in section 2.4 to collect:

(a) We must record that a transformation %as attempted at some point in the code, and whlether or

not it successfully applied.

The time to collect this information is clearly at the time of transformhtion application. I
have not yet discussed exactly what constitutes a transformation, nor what its inputs and out-
puts are. It seems reasonable to suggest, however, that one thing a transformation might b,
responsible for returning is a flag as to whether or not it applied. This information can then
recorded by the recording element.

(b) We must record what any piece of code looked like following any transformation.

This simply means we must keep track of all the intenediate results of transformation. We
can't "let go" of an old expression when a transformation applies which replaces that expres-
sion with some equivalent one. The time to update this information is, again, at the time of
transformation application, but only when a transformation applies successfully, since only at
such times will expressions change. We will assume that each successful transformation returns
not only a flag signifying that it applied, but the results of its application as well.

(c) Wc nuist record things known to he true (or false) at any given location in code.

By this I mean information relating to context. For example, code which is executed follow-
ing the true branch of a test for x = 0 may assume that x = 0 is true. Recording this information

is complicated by the fact that, for any given point in code (and there are many!), what is true
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at one time may not be true at another, because the results of transformation application may
change the context of an expression. We will discuss this issue in more detail in Chapter 'hree.
For now, suffice it to say that there will be an initial context to record, and then some updating
necessary as each transformation applies.

(d) We must record how the information in (c) catte to be known.

This consilutes a justification. L.et us say some transformation t applies to a piece of code.
Its application depends on some truth p. Although upon being queried as to why t applied,
tie system might return p, we might also wish to understand why p is true. 'llus each truth
must also have a justification. Recalling the example given above in which x=0 was true, a
transformation using that information would be responsible for reporting that it did. If we then
needed to he reminded why x=0 was true, we should be able somehow to obtain the reply
"This code is part of the true branch following a test for xzO", and
then perhaps even a pointer to that test. 'he time to collect this information is at the time that
pis recorded. That is, every truth must carry with it a justification; one can not be recorded
without the other.

(e) For each idiividual transformation we must record (1) what must be true to enable successful
allieiation (prerequisites), and (2) wlat is true Following a successful application.

This is static information and only needs to be recorded once. It is associated with a transfor-
mation (as opposed to a section of code), and should be accessible given only the name of a
transformation. It is in some sense part of the description of a tranfornation, though discussion
of how the in formation is represented will be postponed until Chapters Three and Four.
We may now summari.e the task of the recording element of the accountable system.

Transformations must include in their description a set of input and output assertions, available
upon request. Ilefore an), transformations apply, a set of truths for each piece of code (dependent
on it, context) must be collected and recorded along with their justifications. After each transfor-
mation is attempted, it must provide to the recording element the following information:

(1) what code it attempted to transform;

(2) whether or not it was successful;

(3) if it was successful, the resultant code.
The recording element must represent this information in an efficient and accessible manner.

Notice that, in all our discussion, no mention has been made (if how a transformation comes to
apply. Oh\ iously one succeeds if and only if all of' its input prerequisites are met, but even before
that cn occur a transformation must be attempted in the first place. The mechanism %hich controls
this process is indcpendent not only of the recording element, but of the accountable component
as a whole. It constitutes the t'anformational component of the system, and need not be aware at
all that its actions are being monitored. Similarly, recall that I consider the accountable component
merely a passive observer of the transformation process implemented by the transformational com-

av 2
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ponent; it is not concerned with nor responsible for decisions made by that component. This is not
the contradiction it appears to be. For although, when viewed as 1wo components. one works and the

other only blindly records, when they are viewed as one systet. as far as the user is concerned that

sYstem aCcounts for its action&

2.5.2. rhe Query Element

As a result of recording all of the above information, we have tie ability to provide not just
a fancy trace of all the transformations performed, but an historical "slice" of information about

any subtree of the program. [hat is, if we imagine the set of intermediate program trees which

represent the entire program after each transformation has applied, the accountable component
(via the query element) can "cut across time" (so to speak) and return only the information relevant

to changes made in a particular subtrce of the program. For example, suppose a programmer

expected a certain function call to be replaced by its argument. Ile should be able to somehow
"point" to the spot in code and inquire as to whether this substitution occurred and why or why

not.

From grammar school days, we remember that all complete sentences must have both a sub-

ject and a verb. The subject may be implied, as in the command "Go" which expands to "You go".
Or the verb may be implied, as "I" in answer to the question "Who did it?", which expands to "I

did it". Similarly, when one asks a question, both a subject and a verb must be present, expressed,

or implied. In the query element, we need a mechanism for "pointing" to the subject of our query,
and a mechanism for specifying the action or verb we wish to invoke.

2,5.2.1. Pointing to the Subject

If the subject is a transformation, we may refer to that transformation by its name. A transfor-

mation never changes (if it does, it is no longer the same transformation)and is therefore easy to
, : ,point to.

(ut now consider the problem if the subject is a piece of code. We have no easy way to point

to it, unless the code is a function definition, in which case we can refer to it by name. ''o point to
a piece of a function definition, we must describe that piece: "'[he first predicate of the conditional

clause which is the body of the finction definition FOO" or "The second argument to the function

call BAR where that call occurs in the call to BAZ in the value returned from the second clause

of the conditional expression which is bound to the dummy variable TREE in the LET statement
which forms the body of the function definition of QUUX." That sounds pretty awful; would you

like to see it?

(DEFUN QUUX (A B C)

i-*1
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(LET ((TREE (COND ((NULL A) NIL)

(T (BAZ (BAR B (CAR A)))))))

(COND ((NULL TREE) (LIST A B C))

(T (CONS C TREE)))))

That's really not so bad, is it? The problem is that even to point to the code (CAR A) in the trivial

definition above requires a lot of blabbering. Another method might be simply to say ""lbe first (or

hth') occurrence of the call (CAR A) in the dcfinition of QUUX". but there are cases Ahen having

to count the occurrences of the desired expression (or even giving the desired expression) would be

more complicated than rcferring to the structure of the context. Ior example, consider a lengthy

function definition in which you wished to point to a certain conditional expression. There very
well might be a dozen conditional expressions in the definition, and you would have to look for and

find them all until youI came to the one you wanted in order to know the Nalue of n. Not that the

first way is easier" hoth methods are painful. A simplt solution to die problem of pointing % ould be
to use a graphics tcrminal equipped with a mouse: however, I don't want this system to have to rely

on those.

Another complicating factor arises if we decide to ask about some piece of code that only
occurs in an intermediate version of the program. That means that to specify the code we wish to

use as the subject of our query. we must not only describe the context of the parse tree it occurs
in. but specify the time at which that tree Occurred. What constitutes time in our transformation

system?

Since the passage of time around some object can only be detected by the observation of

change in that object, we must consider what might bring forth changes in the argument program.
Ihe succe4sful application of a tiansforination cert.inly does, though an unsuccessful attempt does
not chan e tie argument program. Assuming that the system will operate on a sequential machine

(a, oppcd to the complexities inxolved in dealing with parallel processes or parallel machines),

then defining a unit of time to be the application of a transformation seems appropriate. Later
we will see whether this definition is appropriate when dealing with unsuccessful transformation

attempts.

We can now label each unit of time. 'Te input program is labelled version 0. and if there were

n successful transfonnation applications, then the resultant output program is version n. For any k
such that 0 < k < n, crsion k is the program produced by the first k transformation applications.
Or, sid another way, version k of the program is the result of applying the kth transformation to
version k - I. of the program.

This description (of time is useful not only in the the qucry element, but in the recording

element as well. That element will need a means of distinguishing the record of one version from
the rccord of another.

But now back to the problem at hand: pointing to a particular piece of code. We know we
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can specify the Nersion of the tree we wish used as a search domain by giving the correct numerical
label. That can be a big problem if we don't know at what time(s) the tree was extant!

'To limit the possihilities, let's constrain them. First, we %ill assume that the programmer is
most familiar with the %ersion of the program he wrote. Thus, if at any time he wishes to ask about
a particular piece of code. most likely he mentally sees the subject code as it occurs in version 0 of
the program and is able to describe the location of the code he wishes to ask about as it appears
in that version. 'Ilierefore Ae state that the initial search for a piece of code to point at will be
made using %ersion 0 of the program. Secondly, given the tree to use as a search domain, in order
to specit. that subtree of it it) which one wishes to point, one first specifies the relekant function
definition name (QUUX in the example above). 'IThen the programmer must somehow direct the

query t,'ment to the desired piece. Since I.ISI' lends itself so readily to the use of tree structures, I
have decided (lor now) that the most painless way of referring to a piece of code is to say "down",
"over". or "up" until the correct piece is pointed at. h'lhus, to point at (CAR A) in the example

above. I would give the function name QUUX. then the string of commands "down, over, over,
over (now it's pointing to the LET statement), down, over, down, down, over (now it's pointing

to the first conditional expression), down, over, over, down, over (now it's pointing to the call to
BAZ). down, over, down, over, over (and now it's pointing to the call (CAR A))." Now that also
sounds painful, but if a cursor responds immediately to each command by jumping in front of the
currently pointed to expression as displayed on the terminal screen, then it's not so bad. Once we
discuss the implementation of our system, things may get easier, but for now we will settle for this
method of code specification.

2.5.2.2. Specifyitg the Action

Specifying the action to perform or some piece of information to return about the subject is
considerably easier than pointing to the code. If we imagine a menu of available information, all
one must do is select an item from that menu, and the desired dish of information should be served
immediately. Designing the menu to meet the needs of the user is, however, an important and non-
trivial task. I have discussed already (in section 2.4) the information we have decided to provide the
user. l.et's now categorize this information further into some sort of draft menu. Whether or not
providing this in formation is actually feasible will be discussed in Chapter Four.

Given a transformation as the subject of a query, we can ask the following:

* (n) number of times attempted - Returns a number which represents the number of times this
transformation was attempted.

* (+) positive attempts - Returns a number which represents the number of times this transfor-
niation successfully applied.

* (-) negative attempts - Returns a number which represents the number of times this transfor-
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mation failed to apply.

* (<a number>) some number n - Prompts for either a + or a -. then returns the piece of code
which was the argument to the transformation the nth time it succeeded or failed, respectively.

(i) input assertions - Returns those truths which are prerequisites for application of this trans-
formation.

* (o) output assertions - Returns those truths which will be changed as a consequence of the
successful application of this transformation.

Given a piece of code as the subject of a query, we may ask the following questions:
* (+) next change to subject tree - Returns the piece of code as it appears following the transfor-

mation which next applied to it at the current level (as opposed to one of its subtrees). If no
transformation applied at that level, it says so and returns the same piece of code.

* (-) previous change to subject tree - Returns the piece of code as it appears previous to the

transformation which last applied to it at the current level. If no transformation has applied at
that level, it says so and returns the same piece of code.

* (n) next version of subject tree - Returns the same tree as it appears following the transforma-
tion which next applied to any subtree of the subject tree. If there is no change, it says so and
returns the same piece of code.

a (p) previous version of subject tree - Returns the same tree as it appears previous to the trans-

formation which last applied to any subtree of the subject tree. If there was no change, it says so
and returns the same piece of code.

* (1) last version of subject tree - Returns the final version of the subject tree, as it appears in the

output of the transformational component.

* (v) current version of subject tree - Returns a number.

a (x) transformation which created current version of subject tree - Returns the name of the
transfonnation.

* (t) truths known - Returns a list of the things known to be true for subject tree at the current
point in time, and for each truth, its justification.

* (s) set version - Prompts for some number n and returns the subject tree as it appears in
version n.

2.5.2.3. An Example

Given this menu of information, let's dredge up the function call used back in Chapter One

and see if our new accountable component with its recording and query elements gets us anywhere.
Our input to the transformation system (used with some canned set of oplimi/ing transformations)

is the following function call:
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(APPEND (MYMAPCAR (FUNCTION FOO) '(A B C)) (BAZ Z Z))

For now we will assume that the system already knows the dcfinitions of MYMAPCAR and BAZ. We

set the query element to point to version 0 of the call to APPEND. Now "hat? We can ask to see
what this tree looked like at any point in time (version 0 through version n where there were n

total transformations applied). The system when it is through transforming will tell us how many

transfonnations applied, that is, the "time" at the end of the run, if we enter the "1 " command.
Let's say there were 10 applications. "len we ask to see %crsion 10. lie fully optimized code
returned by the system looks like:

(CONS (MYFUNCALL (FUNCTION FOO) 'A)
(MYMAPCAR (FUNCTION FOO) '(B C)))

Now we start scratching our respective heads. First, we are curious to learn where the CONS came

from, so we enter "-" to see what was here before.

(APPEND (CONS (MYFUNCALL (FUNCTION FOO) 'A)

(MYMAPCAR (FUNCTION FOO) '(B C)))
NIL)

"Ahhh..." we say, "the call to APPEND was simplified: it's second argument was NIL, so the first
argument was returned." And in fact, we can get just that answer if we ask for the name of the
transformation that applied, and then, using that as our subject, inquire as to its input assertions.

We're pretty sure we understand how the first argument to APPEND came to be, but we can't
figure out the NIL. So we give the correct combination of "downs" and "oviers" to arrive at the
N I L, which in this case would be "down, over, over."

NIL

Now we enter "-" to learn what this tree was before it was NIL.

(COND (T NIL))

That wasn't incredibly helpful; let's try entering - again.

(COND (T NIL)

(T (LIST Z Z)))

The code begins to look familiar, but obviously what we want is to discover how it comes to believe
the first test will always return T. Let's "down. over, down" our way to the first predicate and enter

(EO Z Z)

' t
- I II *_al Il ".

°
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Now it's all clear! Since we called BAZ with tie arguments Z and Z, the first test in its definition
will always be true. But let's say we didn't remember the call to BAZ (maybe you don't!). We can
back Ip to the conditional expression ("tip, up") and ask to see what it was in version 0.

(BAZ Z Z)

Now we enter "n" to see what happened to this tree next.

((LAMBDA (X-O Y-O)

(COND ((EQ X-O Y-O) NIL)
(T (LIST X-o Y-0))))

z Z)

If we ask for the transformation which produced that, it would say Procedure integration.
We can live with that. The strange dummy argument names were created (that's "gensymcd" for

LISP hackers) to avoid variable name conflicts. So now what? If the programmer still doesn't
understand, he can continue to ask for in formation until he does. We can see at this point, however,
that when the actual arguments are substituted for the dummy arguments (Z for X-O, and Z for
Y-O), that the equality test will change to (EQ Z Z), which explains the NIL we had way back
up there.

Although I wish to concentrate on the issues involved in implementing an accountable source-

to-source transformation system, we must first discuss the transformation system it will work with.
As you may recall from section 2.5, the transformational component and the accountable com-

ponent are to be independent of each other: the transformational component is not aware of the
existence of the accountable component, and though the accountable component is aware of the
transforiational component, it is not responsible for the decisions that the transformational com-
ponent makes. If I were interested in discussing issues of the implementation of transformation
systems, then I could ignore the issue of accountability (and indeed, so far everyone else has
ignored it). However, since the accountable component both observes the actions of the other
and expects certain information to be made available by the transformations, before describing its
implementation I will first discuss the transformational component of the accountable system,



Chapter Three

The Transformational Component

IE TRANSFORMATIONAL COMPONENT of the system will be implemented as simply and

IT straightforwardly a- possible so that we may concentrate on the more interesting issue of

accountability. Though source-to-source transformation systems conceptually operate on tie text

of a high-level language source program, internally they typically manipulate a non-textual repre-

sentation. similar to (or often identical to) a parse tree of the program. The use of this internal form

makes the system's access to pieces of the structure more efficient (as opposed to having to re-parse

the program every time the system needs to refer to a part of it). In order to avoid having to deal

with parsing and internal representation, I made several decisions. First, I chose to transform LISP

programs only. Since the LISP parser is made available to the user via READ, I didn't have to write

my own. Second, I chose to implement the transformation system in LISP. And third, I decided to

hide decision number one from decision number two. Which leads us to the subject of information

hiding.

3.1. Information Hiding

Information hiding is the separation of data definition from program definition. In the case

of the transformation system, it means not letting the implementation realize that it is transforming

LISP code. Instead. whenever it wishes to access a piece of data, rather than obtaining that piece

directly it calls a procedure to do it. liat is. there arc specific data selection and data constructing

procedures which are called whenever data is manipulated. For example, suppose that we have

31
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5-EFUN FCAtL!FUNC (FUNCTION-CALL)
(CAR FUNCTION-CALL))

(DEFUN FCALL!ARGLIST (FUNCTION-CALL)

(CDR FUNCTION-CALL))

(DEFUN FCALL!FIRST-ARG (FUNCTION-CALL)
(ARGS!ARG (FCALL!ARGLIST FUNCTION-CALL)))

(DEFUN FCALL!SECOND-ARG (FUNCTION-CALL)
(ARGS!ARG (ARGS!RESIARGS (FCALL!ARGLIST FUNCTION-CALL))))

TABILE 3-1. Selector functions for the Function Call structure type.

a function call which is bound to the atom FCALL, and that we wish to select its first argument.
In LISP, a function call is represented as a list, with the operator being the first element and the
operands following. Thus, the first argument of a function call would be the CADR of the list.
However, instead of writing (CADR FCALL) to obtain the first argument though, we call the
procedure FCALL ! F IRST-ARG, defined as:

(DEFUN FCALLIFIRST-ARG (FCALL)

(CADR FCALL))

If the representation of a function call ever changes, we only need to rewrite the relevant data
selecting and constructing functions. The program itself should remain unaffected. We can think
of a function call as a particular data type, and require that no direct reference be made to any
instance of that type except via specific operations defined for that type only. Similarly, we define
a list of arguments to be a separate type also, hiding the representation of argument lists from
the system. We write the function FCALL!ARGLIST which takes a function call and returns the
list of arguments. and the function ARGS ! ARG, which takes an argument list and returns the first
argument. The definition of FCALL ! F IRST-ARG which uses these two new functions is given in

'Fable 3-1. In addition, we can define predicates on these data types which test their state. For
example. b calling the function ARGS ! NULL?, we can ask whether a list of arguments is empty or

not. An extended %ersion of ARGS ! ARG (shown in 'Fable 3-2) uses this predicate to make sure that
no argument list is empty.

The advantages ofinfonnation hiding are that it:

* allows'greatcr flexibility in choice of data representation,

* enhances self-documentation,

9 encourages one to consider the data at an abstract level, apart from program specification, and

* facilitates proving program correctness.
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; Selectors

(DEFUN ARGS!ARG (ARGLIST)
(COND ((ARGS!NULL? ARGLIST)

(ERROR IlArglist is null -- ARGS!ARGI ARGLIST))

(T (CAR ARGLIST))))

(DEFUN ARGS!RfSTARGS (ARGLIST)
(COND ((ARGS!NULL? ARGLIST)

(ERROR 'lArglist is null -- ARGS!RESTARGSI ARGLIST))
(T (CDR ARGLIST))))

; Predicates

(DEFUN ARGS!NULL? (ARGLIST) (NULL ARGLIST))

;;: Constructors

(DEFUN ARGS!AOD-ARG (ARG ARGLIST) (CONS ARG ARGLIST))

(DEFUN ARGS!ADD-ARGS (ARGS ARGLIST) (APPEND ARGS ARGLIST))

TABLE 3-2. Operations for the Argument List structure type.

The disadvanlage of this strategy is that there is extensive overhead in the additional

procedure calls, causing execution time to shoot way up (by about 300 per cent in one of my

programs). However, this can be overcome through use of a set of optimizing transformations.
Transformations can be written which search for calls to the selector and constructor functions and
replace these calls by the appropriate code. We can have our tea and drink it too. In addition, trans-

formations can be written to eliminate duplicate tests that may arise as a result of such procedure
integration. What if the call ( FCALL! F IRST-ARG FCALL) was made at a point in code where
it was already known that the argument list of FCALL was not empty? 'lle call to ARGS! NULL?
in the body of the FCALL! F I RST -ARG would be redundant: a set of optimizing transformations

could reali/e this and eliminate the redundant test. Clearly, information hiding (data abstraction)
and program transformation go hand in hand. For more of my views on the subject of information

hiding. see [Kerns 19771 and [Steele 19801.

3.2. Internal Form

Ily using this information hiding technique. I have essentially hidden the internal form of the

argument program from the transfornation system. This A ill be important later, when I augment
the internal form of the argiimcnt program, using it to store more than just pieces of program text.
At that point h,'. ing special functions to access pieces of it will simplify the task. For now, however,

I".

o I
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it is safe to think of the internal form of the LISP program as the LISP program itself. Some sample
accessing and constructing functions are shown in Table 3-1 and "able 3-2.

3.3. Control

The "control" of the transformational component is that process Ahich models a human pro-
grammer attempting to optimize his code. lie may have a cataV,, of transformations at his side,

but without the knowledge of how to apply them they do him no good. He must recognize that

a transformation is applicable to his code, understand the possible interactions between multiple
transformations to a single piece of code. and be able to verify that a transformation is valid. Two
of the most difficult problems in automating this process are (1) transformation ordering and (2)
information gathering [Loveman 19771. By "'transformation ordering," I mean the decision of when
to appl, which transformation where. "Information gathering" refers to the ascertaining of various
truths about pieces of code.

3.3.1. Transformation Ordering

GiA en the parse tree of an argument program and a set of transformations to apply to that pro-
gram, the order in A hich those transformations are applied may detennine the resultant program

tree. For example, suppose I have the following set of two transformations:

(1) (APPEND <X> (APPEND <Y> <Z>)) => (APPEND <X> <Y> <Z>)

(2) (APPEND NIL <X>) => <X>

I wish to transform the program:

(APPEND FO0 (APPEND NIL BAR))

If I apply transformation (1) first, the resultant program is:

(APPEND FOG NIL BAR)

Then transformation (2) will fail to apply. If, howe\Fer, I apply transformation (2) first, the result

is:

(APPEND FOG BAR)

Then transformation (1) fiils to apply. In the first case (APPEND FOD NIL BAR) is the result,

and in the other, (APPF ND FO0 BAR). Hence, the order of transformation affects not only which

transformations will apply. but the resultnt code as well.

L 7l
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A previous system of mine dealt with this problem b) tightl .ophii the tr t -. L! ns

with the control. The system knew exactly when a transformation waas hkcl. i, .\ppk tlh.ic the

successful application of one transformation would suggest others tho :s ere ltk o 1 appk next.

The transformation system made onIN one pass uver the program tree: it took the tree q.i;t on

the way down, gathering information as it went, then put it back together "better" on the A, ,p

One could not really point to any piece of system code and s, "Ihis is a tr inf,,iiuon": the

so-called transformations had lost their identity by being so tighill hmnd up in the , stlm. Ie

consequences of this approach were that transformations could not be added, deleted, chnged, or

temporarily turned on or off, without much difficult and groseling around in the system. Indeed,

there is some question as to whether this sort of system could correctl\ be labelled a transfoination

system. It was rather merely an "optimizing pre-processor."

The transformations in our system must be identifiable: in order to record the information

discussed in section 2.4, we have to know when a transformation is attempted, what its prerequisites

for application are, and whether it fails or succeeds. Therefore, the current system instead separates

the control structure from the transformations. Furthermore. the notion of interactive optimization

involves giving the programmer the ability to turn certain transformations on or off and to choose

the set or sets of transformations he wishes applied in the first place. Ideally, he should be able

even to write his own transformations. Clearly he can do this only if this separation of control and

transformation is maintained. Hence, we must severely limit tho knowledge the contm! structure
has of the transformations it will use.

Given a set of identifiable transformations, independent of the control structure, how are we
then to control their application? We must order not only the transformations to be applied, but the

subtrees to which they will apply as well. For those two orderings, we must then choose a method

of application. We will discuss each of these three decisions in order.

3.3.1.1. Transfonnalions Within a Set

Obviously we want to choose an ordering for the transformations within the transformation set

which will produce the most desirable result. Consider appling the transformation set

(1) (<arithmetic op> <args--1> 0 <args-2>) =>

(<arithmetic op> 0 <args-l> <args-2>)

(2) (* 0 <args>) => 0

(3) (+ D <args>) => (+ <args>)

(4) (+ <arg>) => (ar9>

to the program:

(+ 7 (. 5 3 0))

-" -- -- J=- " ,- . .. . ." --- - .. .. -' l -. ,k.. . .._ _ _ .,_.___ _ 4%-- r
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Input 'ransfortnation Result
(+ 7 ( 5 3 0)) (1) (+ 7 (- 0 3 5))

(+ 7 ( 0 3 5)) (1) fails
(+ 7 ( 0 3 5)) (2) (+ 7 0)
(+ 7 0) (1) (+ 0 7)
(+ 0 7) (1) fails
(+ 0 7) (2) fails
(+ 0 7) (3) (+ 7)

(+ 7) (1) fails

(+ 7) (2) fails
(+ 7) (3) fails
(+ 7) (4) 7

7 (1) fails
7 (2) fails
7 (3) fails
7 (4) fails

FINISH

TABi.F. 3-3. Markov algorithm ordering rules demonstrated.

'hen neither (2) nor (3) will apply until (1) does, but if (1) applies followed by (2). (3) will not

apply unless (1) applies again. 1 One way to ensure that every transformation is applied as often as

necessar is to use the ordering rules of Markov algorithms. If these rules are used in the above
example, %e obtain the results given in Table 3-3. The number of attempts can be increased

b changing the order of the transfonnations in the set, but for this example, the end results

would be the same. We of course want to minimize the attempts for reasons of efficiency, but

we can derive some comfort from the fact that iterating over the transformations solves some of

our problems. Marko\ algorithm rules are only one method of iteration. We could specify that a

transfiorration is to be applied over and over until it fails, viithout returning to the top of the list

of transforimations betmeen. For example, the program (+ 3 0 4 0 5 0) would be changed

to ( + 0 0 0 3 4 5 ) dtcr threc succcssike applications of(1), then to ( + 3 4 5) after three

successi'.e applications of (3). Or, instead of requiring the control structure to direct the iteration

of transfimroation application, we could place the burden on the transformations themseles. 'hat

is. thosc transformations %hich need to be iterated "ould be responsible for iterating within them-

selves.

I Note that arihrnctic op!im'a/lion like Ihis iN e,,i trick\ Round-off enor or c\cn ocrflow ma be atected by
order of e.luaiion and/or a ,nnianoIr' I ujht)Lernc, in I ORI RAN. I f t1.0 ma% be uscd to chan e the 1)pC of I.
Stiniarl,. in Macl ISP, (P US (I IXNUM- lD- Ni ITY I) 0.0) is the ,ainc a., (FLOAT I)

J'4
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Iteration of transformations solves the problem of the application ofa transformation resulting

in code %hich can be changed by a transformation that has already applied. 'here is still the
problem in which the successful application of one transformation prevents the successful applica-
tion of another, as was illustrated in the APPEND example given earlier. One solution to this
problem is to supply enough transfornations to cover all the cases which might arise as a result of
preqious transformation applications. That is, we would supply a third transformation:

(APPEND <X> NIL <Y>) => (APPEND <X> <Y>)

This solution can be carried to extreme though, supplying many special purpose transformations
with no general utility at all. (Why not simply write the one transformation which will apply to the
entire program and produce the desired result?) Clearly, some care needs to be taken when order-
ing transformations within a set, there is no system of application that is guaranteed to compensate
for thoughtless ordering on the part of the programmer.

Let me just comment briefly on one other ordering strategy, where the transfonnation which

applies is responsible for stuggesting the transformation(s) to try next. Th~at is, the order of applica-
tion is determined dynamically. There certainly is much to be said for this method, but unless it
is done in such a way as to guarantee that all those transformations which should be applied are
reachable, it should only supplement the methods we have discussed above. Whether one specifies

the uanftormation which is to be tried next by ordering them within a set or by linking them within
themselves, human thought must be used. In this system, I have chosen to simplify the control
structure by making the transformations responsible for their own iteration, and ordering them by
means of their placement in a transformation set.

3.3.1.2. Subtrees of the Parse Tree

As well as ordering the transformations within the set, we must choose an order in which to
transform pieces of the argument program. Several possible orderings are: the lexical order of
the input text, the order of evaluation of the input program, or a left-most, depth-first tree order

[Geschke 1972]. The lexical order of the input text is not a good choice. In I.ISP, the order of
evaluation is with minor exceptions, a left-most, depth-first tree order. There are a number of
good reasons to select the order of evaluation of the program as the order of transformation of the
program:

* Optimizing a program can be thought of as partial evaluation of the program.

* If it can be determined that a particular subtree would never be eoaluatcd then similarly there is
no need to transform it.

e Since LISP rccursicly evaluates the arguments of an expression before applying the operator

to those arguments, a tranfonnation which applies to some subtrec can assume that its subtrees
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(DEFUN SEXPR!EXPANO (SEXPR ENVIRON rrtlIsr)
(COND ((ATOM? SEXPR) SEXPR)

((COND? SEXPR) (CONOWEXPAND SEXPR ENVIRON ITLIST))
((DEFETlE? SEXPR) (DEFETTI EXPAND SEXPR ENVIRON FILIST))

((FCALL? SEXPR) (ICAL!EXI'AND SEXPR ENVIRON FTLIST))
((ANDEXPR? SEXP) (ANDEXPAND SEXPR ENVIRON FTLIST))
((OREXPR? SEXPR) (OR!EXPAND SEXPR ENVIRON FILIST))

((QUOTE? SEXPR) SEXPR)
(T (ERROR 'IlUnparsable s-expression - EXPANDI SEXPR))))

TABLE 3-4. Main control function for the transformational component

have already been transformed.

To better illustrate this last point. consider again the APPEND example. If we transform subtrees

in the order in which they will be evaluated, then the transformations will apply to the outer
APPEND only after they have applied to the inner one. So regardless of the order in which those
transformations occur within the transformation set, the transformation %.hich simplifies the inner
call, (APPEND NIL BAR), will always apply before the transformation which simplifies the outer
call, (APPEND FOG (APPEND Nil. BAR)).

3.3.1.3. Mcthods of Application

TVhough we have discussed the ordering of transformations within a set and selected an order
for application to subtrees of the parse tree, we must still decide on one of the following two
methods of application:

(1) Given a set of transformations and a program tree, apply each transformation in its turn to
all the subtrecs in the tree. First apply one transfornation everywhere, then eliminate it,
then apply the second transformation everywhere, eliminate it, and continue until the set of
transformations is empty.

(2) Given a set of transformations and a program tree, apply all the transformations to each sub-
tree of the tree in its turn. First apply all the transformations- to the first subtree in the tree,
then move on to the next subtree and apply all the transformations possible there, and continue
until every subtree has been transformed.

Our transformation system uses method (2), for the following reasons:
Since we have decided to apply the transformations to the subtrees of the program's parse

tree in the order that those subtrcs will be evaluated, we can model the control structure after the
design of a I.I) interpreter. Given some s-expression to evainte. the interpreter will first deter-
mine the type of structuie it has hold of. I.ISI' has a number of special foirms tlitman 1980], and
all of the arguments in these formts are not necessarily exahiated. For example, the arguments to
a conditional expression are ealuated in a special way, as aic the arguments to AND, OR, QUOTE,

A -Ili ' ''-- " .. ll ~ :
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*ATOM* an atom
$COND* a conditional expression
*CJLAUSE* "1argument" to a conditional expression
*DEFETTE* a function definition

(may be an internal lambda expression, or a MacI ISI DE FUN , or whatever)
*FCALL* a function call

(may be built-in or user defined)
*FUNCNAME* the name of a function

*AND* a conjunct
*OR* a disjunct

*QUOTE- a quoted expression

TABLE 3-5. Structure types.

(DEFUN ANO'XFORM (ANOCELL ENVIRON FTLIST)
(XFORM 'ANO'TRIM ANDCELL (LIST))
(XFORM 'ANOISIMPLIFY ANOCELL (LIST))
(XFORM 'SEXPR!FORM-OVAL ANDCELL (LIST ENVIRON FILIST)))

(DEFUN ATOM!XFORM (ATOMIC-EXPR ENVIRON FTLIST)
MXORN 'SEXPR!FORI4-BVAL ATOMIC-EXPR (LIST ENVIRON FTLIST)))

(DEFUN cONDWXORM (COWOELL ENVIRON FTLIST)
(XFORM 'CONI)'TRIM CONOCELL (LIST ENVIRON FTLIST))
(XFORM 'CONDSIMPLIFY CONNCELL (LIST))
(XFORM 'SEXPR!FORM-BVAL cONOCELL (LIST ENVIRON FTLIST)))

(DEFUN DEFETTEWXORM (DEFETTE ENVIRON FTLIST)

(XFORM SEXPR!FORM-BVAL DEFETTE (LIST ENVIRON FTLIST)))

TABLE 3-7. Transformation sets for some structure types.

etc. Just as the interpreter checks the type of expression it is to evaluate, the transformation system

looks at die type of the subtree it is to transform. Blased on that type, the system will see that the
arguments are correctly transformed (that is, the subtrees of the subtree it is dealing with), then

%ill call those transformnations which can appbj to the type of the current subirce. I have categorized
the possible s-expressions into different structure types, and divided the transformnations into a

separate set for each ISP structure type. [Fhat way, once the subtrees of an expression have been

transfonined. the expression itself is transformed by the set of tranformations which apply to its

type. '[he control mechanism for the transformational component has, limited knowledge of the

tranformnations it applies: it only knows that for each structure type there is a difrereit set of
tranformations. and will apply the correct set. '[hei main control mechaniismi is implemented by the

function SEXPR I EXPAND, listed in 'lable 3-4.

-- -.- --- --- r ~ t zi



40 CIIAPTrER THREE 'i IE RANSFORMA] tON'Al. COMPONENTV1

(DEFUN ANDEXPAND (ANDCELL ENVIRON FTLIST)
(AIJO!PRDICATE ANDCELL)
(ANDARGS!EXPAND (ANO'ARGLIST ANOCELL) ENVIRON FTLIST)
(AND!XFORM ANDCELL ENVIRON FTLIST))

(DEFUN ANOARGSEXPAND (LOGARGS ENVIRON FTLIST) ;Slave function to ANO'EXPAND
(COND
((ARGS!NULL? LOGARGS) NIL)
(I (LEI ((FIRSI-ARG (ARGS!ARG LOGARGS)))

(SEXPR!EXPAND FIRST-ARG ENVIRON FTLIST)
(COND
((TRUE? FIRST-ARG)
(ANDARGS!EXPAND (ARGS!RESIARGS LOGARGS) ENVIRON FTLIST))

((NULL? FIRST-ARG)
NIL) ;Rest logargs not expanded since won't ever evaluate
(T (ANDARGS!EXPAND (ARGS!RESTA1GS LOGARGS)

(ENV!RECORD-TEST ENVIRON FIRST-ARG T FTLIST)
FTLIST)))))))

(DEFUN ATOM'EXPAND (ATOMIC-EXPR ENVIRON FTLIST)
(ATOMMXORM ATOt4IC-EXPR ENVIRON FTLIST))

(D)EFUN COND'EXPAND (CONOCELL ENVIRON FTLIST)
(CLAUSES!EXPAND (CONO!CLAUSES CONDCELL) ENVIRON FTLIST)
(COND!XFORM CONDCELL ENVIRON FTLIST))

(DEFUN DEFETEEXPAND (DEFETTE ENVIRON FTLIST)
(DEFETTE!PREDICATE DEFETTE)
( SEXPRIEXPAND (DEFETTE!BODY DEFETTE) ENVIRON FTLIST)
(DEFETTE!XFORM DEFLITE ENVIIRON MTisr))

TAILr 3-6. Control functions for some structure types.

Every LISP stnicture that might be transformed must be given a transformation sct and an
opportunity to apply it. Though it is possible that someone might write a transformation meant to
apply to the clause of a conditional expression, for example, one usualy thinks of such a clause as
part of the larger *COND* structure. rather than a structure type itself. Rather than put an limita-
tions on tratnsformnat ions, however. I chose to give all such "substructures" structure types of their
own. The structuire types I have defined can be scen in Tlahle 3-5. Not all of them are recognized
by SE XPR! EXPAND, since some of them are not c~aluahle independently of their superstructure.
R.ich structure type has its own control function. Some of these control functions simply call the
appropriate control function for its structure's suhtre. followed by a call to die transformation
set (see 'Table 3-6 and TFable 3-7), hut a fek types need slightl) more prcessing. Tlhe *FCALL.
structure type, for example. consists ofa function anid an argument list. Mhe function may be either

* , be the name of a function (and thus a special muom oif type .* UNCNAME*). in which case it is a
candidate for procedure integration, or it may be an internal lamnbdai definition. Controlling the

* . transformation of internal lamibda definitions can be at bit trick>. cqpeciall> A hen it comes to keep-
ing the information which) has been gathered straight concerning the changes in variable names
brought about by lambhda binding. But that is a subjeCt for the next section.
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3.3.2. Infonnation Gathering

Information gathering refers to the ascertaining of those truths about a piece of code which

form its context. Local transformations such as the rules (CAR (CONS <X> <Y>)) => <X>

and (EQUAL <X> <X> ) => T don't need to know anything about the context of the code they

are transforming [Bagwell 1970]. But global transformations do: their validity depends on the
nature of the surrounding code [Schaefer 1973]. Since we have decided to transform expressitins in

the order in which they are evaluated, the transformation system will ha~e walked down the parse
tree as far as the expression it is currently transforming. That means it can be aware of the context

of an expression by the time it gets to the expression, and merely needs a method for recording that

context.

3.3.2.1. Clarq5,ing the Need

The substitution rule (OR <X> T), => T is not always correct. In Macl.ISP, at least, OR

returns the value of the first argument which is true. Thus, (OR 3 T ) returns 3, not T. However,
if this test occurs in a predicate position, such as the predicate of a conditional clause, only the

boolean value of the expression is needed and the transformation of (OR 3 T) to T would be

correct. Knowing whether or not an expression is in predicate position is a type of what I call
"special" contextual information, as opposed to "common" contextual information. Special contex-

tual information is true only of a particular instance of an expression. Just because (OR <X> T)

occurs in predicate position at one point in code, doesn't imply that other instances of that expres-

sion do also. Common contextual information refers to truths pertaining to every occurrence of a
particular expression. Consider optimizing the code:

(DEFUN EXAMPLE (FOO BAR BAZ)

(COND ((ATOM FOO) NIL)
((ISINDEXED FOO) (PROCESS-INDEX FOO BAR BAZ))

... (GET-PART FOO) ... )
(T ...

(DEFUN ISINDEXED (X)

(AND (NOT (ATOM X))
(ATOM (CAR X))

(NUMBERP (CAR X))))

(DEFUN GET-PART (Y)
(CONO ((ATOM Y) NIL)

((AND (ATOM (CAR Y))

(NUMBERP (CAR Y)))

__ __ _
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(CADR Y))
-" (T (CAR YI))))

When IS I NDE X ED is expanded in-line, the definition of E XAMP LE will appear as:

(DEFUN EXAMPLE-PROGRAM (FOO BAR BAZ)

(COND ((ATOM FOO) NIL)

((AND (NOT (ATOM FOO))
(ATOM (CAR FOO))

(NUMBERP (CAR FO0)))

(PROCESS-INDEX-PROGRAM FOO BAR BAZ))

... (GET-PART FOO) ...

(T ...

The test (ATOM FOO) unnecessarily appears twice. The second clause of the conditional ex-
pression can only be evaluated if the predicate of the first clause returned NIL. Thus, at the
point where ISINDEXED is expanded, it is known that (ATOM FOO) is 1IL. Similarly, at the
time that PROCESS-INDEX-PROGRAM is evaluated, it will be known that FOO is not an atom,
(CAR FOG) is an atom, and (CAR FOO) is a number. And, when (GET-PART FOO) is ex-
panded, it is known that FOG is not an atom, and that (CAR FOO) is not both an atom and a
number. If at any time a test is performed whose outcome is already known, we would like to have
the ability to eliminate that duplicate test. Thus, after transformation, EXAMPLE should be:

(DEFUN EXAMPLE-PROGRAM (FOG BAR BAZ)

(COND ((ATOM FOO) NIL)

((AND (ATOM (CAR FOO))

(NUMBERP (CAR FO0)))
(PROCESS-INDEX-PROGRAM FOG BAR BAZ))

... (CAR FOG) ...

(T ...

I should mention here quickly one caution about global transformations. Most high-level
languages are impotent without the use of side-effects. But side-effects wreak havoc for global
transformations, which must then constantly be on the lookout for changes in the values of current
variables. Just because FOG is not an atom at one point in the code doesn't guarantee that it is
later, since (SETQ FOO <whatever)) (or something similar) could occur in the meantime. I
have currently made no provisions for the transformation of code which may contain side-effects.
The transtbrmational component of this system assumes that the LISP code it operates on is totally
applicative. I can defend this seeming lack of power on two counts:
9 I.SP is one high-level language that manages to accomplish a great deal even when limited to

non-sidc-effecting functions. So it is not completely unreasonable to limit the transformation
system in this way.

111
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(DEFUN AND!PREDICATE (ANDCELL)
(SEXPR!MAPCAR (FUNCTION PREOIFY) (ANDARGLIST ANDCELL))

(COND ((NOT (PRED? ANDCELL))
(DEPREDIFY (ARGS!LAST-ARG (ANDWARGLIST ANDCELL))))))

(OEFUN DEFETTE!PREDICATE (DEFETTE)

(COND ((PRED? DEFETTE) (PREDIFY (DEFETTE!BODY DEFETTE)))))

TABLE 3-8. Propagation of predicate position information.

The accountable component of our system is in no way dependent on this constraint. It merely

records the transformations made by the transformational component, and couldn't care less
about the restrictions on or justification for those transformations. The emphasis of this thesis
is on the accountable component; the transformational component I am describing has been
implemented merely to demonstrate the use of the other.

3.3.2.2. The Environment

In order to allow global transformations in our system, we record both special and common
contextual information. Special contextual information does not present much of a problem;
we simply augment the internal form of the program by storing properties of expressions along
with the expression itself. When a conditional expression is encountered, the predicate position
property may be added to all the predicate expressions within the conditional. If an AND expres-
sion is in predicate position, than all its arguments are also. If not. all but its last argument
is in predicate position, and so on. *he code in 'fable 3-6 contains function calls of the form
<type) ! PREDICATE; their definitions are given in Table 3-8. Common contextual information,
on the other hand, needs to be recorded in such a way that code lower in the tree can access it. We
will do this by maintaining an environment, much like a LISP interpreter does. 'llhen whenever a
transformation requests information about sonic piece ofcode. (he environment is queried.

Each member of the environment consists of some LISP expression whose truth value is
known, its truth value, and a justification for that value. Thc environment acquires more knowledge
every urme it encounters:

e a conditional expression,

9 an AND expression,

* an OR expression, or

* explicit assertions in the code.

5
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A conditional of the form:

(cond (<pred-l> <exi .form-I>)
(<pred-2> <exitform-2>)
(<pred-3> <exitform-3>)

can assume at each location the truths given:

(cond (? [<pred-l> true] )
([<pred-l> false] [<pred-2> true, <prcd-l> false] )
([<pred-I> false, <pred-2> false] [<pred-3> true, <pred-2> false, <pred-l> false])

TABLE 3-9. Propagation of information within a conditional expression.

As we saw in the above section, tests performed within a conditional expression result in
information which can then be distributed within that expression. Table 3-9 illustrates the infor-
mation which can be distributed. CLAUSES!BRANCH is the function which knows how to trans-

form conditional expressions. Conditionals are a special form in LISP because their "arguments"

are not necessarily all evaluated. Thus, instead of transforming all the clauses right away,

LCLAUSES!BRANCH transforms only the first predicate of the first clause in the list of clauses. If
that predicate is determined to be true, CLAUSES! BRANCH transforms the rest of the clause and

quits, just like the LISP interpreter would do. If the predicate is false, it ignores the rest of the
clause and calls itself on the remainder of the clauses. If the predicate can not be determined true

or false, then it must transform both the rest of the clause and the remaining clauses, but it does
this with an updated environment. 'IVahle 3-10 contains a listing of' CLAUSES IBRANCH. Notice

the two calls to ENV! RECORD-TEST in the definition of CLAUSES ! BRANCH which occur when
the current predicate cannot be determined to be true or false. In that case, the environment used
for the transformation of the rest of the clause should contain the information that the current

predicate is true, and the environment used by the rest of the clauses in the conditional expres-
sion should know that the current predicate is false. ENV! RECORD- [EST takes an environment,

the predicate expression. and the predicate's outcome. and returns a new environment with the

additional in formation recorded.
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(DEFUN CLAUSEStEXPAND (CONDLISI *CLAUSES-ENVIRON. .CLAUSES-FrLIST*)
(DECLARE (SPECIAL *CLAUSES-ENVIRON. .CLAUSES-FTLIST*))
(COND
((CLAUSES!NULL? CONDLIST"1 NIL)
(T (LET ((XIST (CLAUSE!PRED (CLAUSES!CLAUSE CONDLIST))))

(PREDIFY XTST)
(SEXPR!EXPAND XTST *CLAUSES-ENVIRON* .CLAUSES-FTLIST*)
(COND
((TRUE? XTST)

;Rest of clauses not expanded since evaluation stops here.
(SEXPR!MAPCAR (FUNCTION

(LAMBDA (SEXPR)
(SEXPR!EXPAND SEXPR

*CLAUSES- ENVIRON.
*CLAUSES-FILIST)))

(CLAUSE!EXITFORM (CLAUSES!CLAUSE CONDLISY))))
((NULL? XTST)

;Rest of clause not expanded since it will never be returned
(CLAUSES!EXPAND (CLAUSLS!CLAUSES CONDLIS')

*CLAUSES-ENVIRON.
.CLAUSES-FTLIST*))

(T (LET
((*LEr-rLIST.

(ENV!RECORD-TEST *CLAUSES-ENVIRON. XTST T sCLAUSES-FTLIST.)))
(DECLARE (SPECIAL *LET-ILIST.))
(SEXPR!MAPCAR (FUNCTION

(LAMBDA (SEXPR)
(SEXPR!EXPAND SEXPR

*LET-TI-1ST.
.CLAUSES-FTLIST.)))

(CLAUSE!EXITFORM (CLAUSES!CLAUSE CONDLIST))))
(CLAUSES!EXPAND (CLAUSES!CLAUSES CONDLIST)

(ENV!RECORD-TEST *CLAUSES-ENVIRON.
XTST
NIL
.CLAUSES- FTL 1ST*)

.CLAUSES-FTLIST*)))))))

TAK~E 3-10. Controlling fumncuion for conditional clauses.

After transforming any argument of an AND expression. transformation of the remaining ar-
guments takes place with the assumption that the preceding argument is true. Similarly for an OR
expression. the transformation of any argument may assume that all preceding arguments are falsc.
The environment used for the transformation of these arguments is updated and nmaintained using
the same functions described above.

Assertions consist of an s-expression and a list of truths to be assumed by that expression. An
assertion may be hand coded by the programmer or generated automatically by a transformation.
When an assertion is encountered by the main control Function. SE XPR ! EXPAND, it records the
truths on the current en% iroment and proceeds to transform the enveloped text. *Fh-us an ,sserdion
constitutes a new struLCture type:. we must providc for it by redcfining SE XPR I E XPAND, as seen in
TFable 3-11.
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(DEFUN SEXPR!EXPAND (SEXPR ENVIRON FILIST)

(CONO ((ATOM? SEXPR) SEXPR)
((COND? SEXPR) (CONDEXPAND SEXPR ENVIRON FILIST))
((DEFETTE? SEXPR) (DEFETTE!EXPAND SEXPR ENVIRON FTLIST))
((FCALL? SEXPR) (FCALL!EXPAND SEXPR ENVIRON FTLIST))

((ANDEXPR? SLXPR) (ANDI[XPAND SEXPR ENVIRON FTLIST))

((OREXPR? SEXPR) (OR!EXPAND SEXPR ENVIRON FTLIST))
((QUOTE? SEXPIR) SEXPR)

((ASSERT? SEXPR) (ASSERT!EXPAND SEXPR ENVIRON FTLIST))
(T (ERROR 'IlUnparsable s-expression - EXPANDI SEXPR))))

(DEFUN ASSERr'EXPAND (ASSERTION ENVIRON FTLIST)
(SEXPRIEXPAND (ASSERT!SEXPR ASSERTION)

(ENV RECORD-TEST
ENVIRON

(SEXPR!EXPAND (ASSERTITRUTHS ASSERTION) ENVIRON FTLIST)
T
FTLIST)

FTLIST))

TABLE 3-11. Providing for assertions.

The function ENV! RECORD-TEST has the responsibility of recording a test on the environ-

ment. Rather than blindly recording the test given it, the function attempts to break the test down

into as many of its parts as possible. For example, if ENVf RECORD-TEST is told to record as true
the test (AND P Q R), it will instead construct and record the individual entries: P is true,

Q is true, and R is true. If it is told to record the fact that (AND A B C) is false, it
first looks on the current environment to see if any of A, B, or C are known to be true. If so,

ENV! RECORD-TEST can simplify tie given test and record that. Suppose it sees that B is true.
"cn either A or C must have made (AND A B C) false. Thus it records as false the expression
(AND A C). A predicate of the form (NULL <x) or (NOT <x) is stripped of its ncgation

and the outcome toggled befi)re the expression is recorded on the environment. Hence, if it is

known that (NOT FOO) is true, the entry FOO i s fal se is made on the environment.

These rules for recording information enforce a canonical form for entries in the environment

that most efficiently provides information. Suppose we wished to determine whether or not
(AND Q R) was true. We can search the environment and learn that Q is true and that R is

true. thu (AND Q R) must be true. If, when (AND P 0 R) was recorded as true above, we

had simply entered the entire predicate, we would have had a harder time %crifying (AND Q R).
Instead of ha% ing to perform the logic every time something is looked up, %e record the smallest

pieces possible in the first place. A listing of ENV! RECORD-TST is given in Table 3-12.

I should mention one thing more about recording information on die environment: occasion-

ally there arc predicates recorded whose truth or falsity may impl other truths. For example, if a

certain expression is known to be false (that is. null), then it is necessarily an atom, and conversely
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(DEFUN ENV!RECORD-TEST (ENVIRON TST OUTCOME FTLIST)
(COND
((NULL TST) ENVIRON)
((ATOM? TST)
(ENV!ADD-TEST ENVIRON

(ENV-EL!CREATE (FALIST!SUBLIS FILIST TST) OUTCOME NIL)))
((ANDEXPR? TST)
(COND (OUTCOME recording a true AND test

(ENV'RECORD-TESTS ENVIRON (AND!ARGLIST TST) OUTCOME FTLIST))
(T (ENV'ADD-TEST ;recording a false AND test

ENVIRON
EN V-EL!CR EATE
(FALIST!SUBLIS
FTLIST
(LET
((REFINED

(ARGS!REFINE (ANDIARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((AftGS!ONE? REFINED) (ARGS!ARG REFINED))

(T (AND!CREATE REFINED)))))
OUTCOME
NIL)))))

((OREXPR? TST)
(COND (OUTCOME recording a true OR test

(ENV!ADD-TEST
ENVIRON
ENV-EL ICR EATE
(FALIST!SUBLIST

FTLIST
(LET
((REFINED

(ARGS'REFINE (OR!ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!ONE? REFINED) (ARGS!ARG REFINED))

(T (ORICREATE REFINED)))))
OUTCOME
NIL)))

(T recording a raise OR test
(ENVIRECORD-TESTS ENVIRON (OR!ARGLIST TST) OUTCOME FTLIST))))

((NOTEXPR? TST) ;strip off? NOT and toggle outcome
(ENV!RECORD-TEST ENVIRON

(ARGS!ARG (FCALL!ARGLIST TST))
(NOT OUTCOME)
FTLIST))

(T (ENVIADD-TEST ENVIRON
(ENV-EL!CREATE (FALIST!SUBLIS FTLIST 1ST) OUTCOME NIL)))))

TABLE 3-12. Recording information on the environment.

so. Trhus, whenever such a predicate is recorded, any implications are recorded as well. '[his is done

by thc function ENVIADD-TESI.
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3.3.2.3. The Index of Bindings

The current index of bindings is maintained in the variable FTL I1ST. lhis index associates
with each current internal lambda variable its value in terms of top level variables. More
informally, it is an association list of dummy arguments and actual arguments. It provides for the

virtual substitution of actual arguments for formal arguments within any number of nested lambda

expressions, so that information recorded at one level is accessible by transformations performed at
deeper levels. Let's look at an example.

(DEFUN MYSEARCH (ENV rST)
(COND ((EMPTY? ENV) NIL)

((EQUAL TST (GET-TST (GET-ENTRY ENV))) (GET-ENTRY ENV))

(T (MYSEARCH (GET-REST ENV) TST))))

(DEFUN EMPTY? (ENVIRON)

(NULL ENVIRON))

(DEFUN GET-ENTRY (ENVIRONMENT)

(COND ((NULL ENVIRONMENT)
(ERROR 'ICan't ask for element of empty environmentl))

(T (CAR ENVIRONMENT))))

Suppose that a set of optimi.ing transformations is applied to the code abo\e. When VMYSE ARC H is

optimized, procedure integration of EMPTY? will occur in the first clause of the conditional. While

transforming the remaining clauses, then, it is known that (NULL ENV) is false. (We always

record the transformed version of the predicate, not the untransformed version, as the former may

be simpler: if it is, no information will be lost by recording the simpler version since that version
will have been derived from information already on the environment.) During transformation

of the second clause, procedure integration of GET-ENTRY will take place. The definition of
MYSEARCK will then look like:

(DEFUN MYSEARCH (ENV TST)
(COND
((NULL ENV) NIL)
((EQUAL

TST
(GET-TST

((LAMBDA (ENVIRONMENT)

(COND

((NULL ENVIRONMENT)

(ERROR

'IlCan't ask for element of empty environmentt))
(T (CAR ENVIRONMENT))))

ENV)))

(GET-ENTRY ENV))

.1
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(DEFUN FCALL!EXPAND (FCALL ENVIRON FTLISr)

(FCALL!PREDICATE ECALL)
(ARGLISIT!EXPAND (FCALL!ARGLIST FCALL) ENVIRON fTLIST) Expand the arguments

(COND ((FUNCNAME? (FCALL!FUNC CALL))
(FUNCNAML!XFORM (FCALLFUNC FCALL) ENVIRON FTLIST)))

note that because the above transformer side-effects, a given fcall
may pass both the previous and following tests. (i.e. fUNCNAME!SUB-OEF
may make a defcell out of the funchead of the fcall.)

(COND ((DEFtiIE? (FCALL!FUNC FCALL))
(DEFEITE'EXPAND (FCALLPFUNC FCALL)

ENVIRON
(FALIST!ADD-PAIRS ; the new ftlist

(FALIST!CREATE

(BINDING !DARGLIST
(DEFEETE!BINDING (FCALL!FUNC FCALL)))

(FALIST!SUBLIS FTLIST (CALLARGLIST CALL)))
FTLIST))

(DEFCALL!XFORM ECALL ENVIRON FTLIST)))

(COND ((NOT (FCALL? FCALL)) FCALL) ; CALL may no longer be type sFCALL*

(T (FCALL!XFORM FCALL ENVIRON FTLIST))))

TAuLE 3-13. Control function for the Function Call structure type.

(T (MYSEARCH (GET-REST ENV) TST))))

While tranformation of the body of the internal lambda expression is taking place, information

about the variable ENVIRONMENT may be gathered or requested. But only expressions within the
lambda function can contribute to or benefit from that information, since ENVIRONMENT is a local
variable. We need some means of communicating with variables outside the lambda function. That

is, some means of translating between ENVIRONMENT and ENV. The index of bindings provides
that for us. Before anything is recorded or searched for in the environment, it is translated into

the equivalent expression using top level Nariable names, by means of the index of bindings. This
index is updated whenever an internal lambda function is entered. Thus, for example, the index

is empty during transformation of the outer conditional above, but associates the dummy variable
ENVIRONMENT with the actual argument ENV during transformation of the inner conditional
(which occurs inside the lambda function).

When an internal lambda expression is encountered, the index of bindings is updated as

follows:

(1) Using the current index of bindings, translate the actual arguments of the new lambda expres-

sion into strictly top level variable references (since they may contain references to earlier

internal lambda expression variables).

(2) Create an association list of tie dummy arguments used in tie new lambda expression, and the
translated actual arguments from (1).
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(3) Append the association list created in (2) onto the front[ of the current index of bindings, to
create the new index of bindings. (The association list fron (2) must go on the front so that
if any lambda \ariable names are reused, the new definitions will shadow the old ones on the

index of bindings.)

The code which performs these steps is part of the definition of FCALL !EXPAND, which can be

seen in 'able 3-13.

Why are we limited to the virtul substitution made possible b) the index of bindings, as
opposed to just always substituting actual arguments for formals and therefore a\oiding the com-
munication problem? Because only transformations have the prerogatike of performing substitu-
tions in the code. The environment and its index is a compendium of information pros ided as a
scr\ ice to those transformations which require global know ledge of the expression they are operat-
ing on. A transformation may or may not perform a substitution, but that's none of the business of

the control mechanism.

3.4. The Transformations

To complete our discussion of the transformational component, I need to discuss several
aspects of transformations. In order for someone to write their own transformation for the system,

they must know
(a) the syntactic form in which the system expects to get the transfornation,

(b) in which transformation set to put the transfornation, and

(c) the expected inputs and outputs of the transformation.

3.4.1. Form

What constitutes , transformation? In previous sections I have used a substitution rule form

for transfoniations, such as (NULL NIL) => T. While it is possible to devise a system in
which transformations are actually given in that form, it in'olves some complex pattern matching
capabilities. Consider the software necessary to find an application of the transformation:

(COND <clauses-l> (NIL (exitform>) <clauses-))
=> (COND <clauses-I) <clauses-2>)

here < c I a u s e s - I> and ( c I a u s e s - 2 > can match any number of (or zero) clauses. While

sucL ptFern matching is possible and certainly has been done before loy le 1970]. it requires
ophisiicated control nechanisms (and we're trying to keep our control simple. remember?).

I urthermore. not all transformations are easily expressed as substitutions. In particular. global

.'I
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(DEFUN FCALL!SIMPLIFY (FCALL)

(COND ((AND (CAREXPR? FCALL)
(CONSEXPR? (FCALL!FIRST-ARG FCALL)))

(RESPOND T (FCALL!FIRST-ARG (FCALL!FIRST-ARG -CArl))))

(T (RESPOND NIL FCALL))))

TABLF.3-14. Implementation of (CAR (CONS <X> Y))) =><X>.

transformations cannot be expressed in that way since their applicability conditions nay be more
complex than a simple pattern match.

One might consider beefing up a substitution rule form to include other information necessary
to describe the transformation. Pre- and post- assertions could be tckcd on. as well as predicates
to determine whether or not this transformation will really buy anything (an evaluation of its
"goodness" in this situation, called "win" predicates in floveman 19771), and perhaps even a list of
transformations to try next. There are all sorts of possibilities. Howeever, for my current purposes
I want to concentrate on accountability and keep the control for the transformational component

very simple. Therefore, I have opted for transformations that know how to apply themselves
(otherwise known as procedures).

In our systcm. once a transformation has been called it is responsible for figuring out whether
it applies or fails, and for returning a result to the control function which called it. In this thesis,
I refer to the code which implements a transformation as a "transformer". Table 3-14 shows
the transformer which implements the transformation (CAR (CONS <X> <Y > ) ) = > < X >. The
control function passes to the transformer the expression to be transformed, and the transformer

responds with either T or NIL, indicating whether or not it succeeded, followed by the resultant

expression.

One of the benefits of implementing transformations as procedures is that a single transformer
may implement more than one transformation rule. If similar rules are grouped together in one
transformer they can share some of the work needed to determine if they apply. The transformer
FCALL!S IMPL I FY given in '[able 3-14 is expanded in Table 3-15 to include the following trans-

formation rules:

(CAR (CONS <A> <B>)) > <A>
(CAR (LIST <A> ... )) =) <A>
(CDR (CONS <A> <B))) -> <B>
(CDR (LIST <A> <B> ... )) 0> (LIST <B> ...
(APPEND NIL <X>) > <X>

(APPEND <X> NIL) > <X
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(DEFUN FCALLSIMPLIFY (FCALL)
(COND

(CAR (CONS (A> (B>)l -> (A>
(CAR (LIST (A> ... )) -> (A>

((AND (CAREXPR? FCALL)
(NOT (ATOM? (FCALL!FIRST-ARG FCALL))))

(COND ((CONSEXPR? (FCALL!FIRST-ARG FCALL))
(RESPOND T

(rCALL!FIRST-ARG (FCALL!FIRST-ARG FCALL))
(JUST!CREATE 'l(CAR (CONS <A> (B>)) -> (A>l NIL)))

((LISTEXPR? (FCALLtFIRST-ARG FCALL))
(RESPOND T

(FCALL!FIRST-ARG (FCALL!FIRST-ARG FCALL))
(JUST!CREATE 'I(CAR (LIST (A> ... ) - <A>I NIL)))

(T (RESPOND NIL
F CAL I
(JUST!CREATE I'lit isn't CAR of CONS or LIST. I NIL)))))

(CDR (CONS (A> (B>)) -> <8>
(CDR (LIST (A> (8> ... - (LIST (5>..

((AND (CDREXPR? FCALL)
(NOT (ATOM? (FCALL!FIRST-ARG FCALL))))

(COND ((CONSEXPR? (FCALL!FIRST-ARG FCALL))
(RESPOND I

(FCALL!SECOND-ARG (FCALL!FIRS1'-ARG FCALL))
(JUST!CREATE 'l(COR (CONS (A> <B>)) -5 (B>J NIL)))

((LJSTEXPR? (FCALL!FIRST-ARG FCALL))
(XFORM-SLAVE 'SEXPR!NOTI4ING

(FCALL!FIRST-ARG (FCALL!FIRST-ARG FCALL))
(LIST (JUST!CRFATE 'lit was COR'd over.l NIL))
F CA I I)

(RESPOND
T
(FCALL!FIRST-ARG FCALL)
(JUST!CREATE 'I(CDR (LIST <A> <8> .. - (LIST (B> ...)I NIL)))

(T (RESPOND NIL
k FCALL

(JUST!CREATE 'lit isn't CDR of CONS or LIST.l NIL)))))
(APPEND NIL <X>) -> <X>

((AND (APPENDEXPR? FCALL)
(NULL? (FCALL!FIRST-ARG FCALL)))

(RESPOND T
(FCALL ISECOND-ARG FCALL)
(JUST!CREATE 'I(APPEND NIL <X>) -> <X>I NIL)))

(APPEND (X> NIL) -> <X>

((AND (APPENDEXPA? FCALL)
(NULL? (FCALLISECOND-ARG FCALL)))

(RESPOND T
(fCALL!FIRSI-ARG FCALL)
(JUS7!CRFATk ICAPPEND <X> NIL) -> (X>I NIL)))

(T (RESPOND NIL FCALL (JUSTICREATE '1no patterns matched.l NIL)))))

TABLE: 3-15. A transformer may implement several transformations.

1Transformers arc not allowed to call othcr transformers. lFach transformer is expected to be
indcpcndent oif any other. TVhe reason for this is that confusion would reign if a user removed a
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transformer from a transformation set (as he should be free to do) which was called by, another he
left in. Furthermore, the function XFORM, which calls a transformer and receiles its response, is
dependent on the fact that no other transformer is called in the meantime.

3.4.2. Selecting a Transformation Set

For the most part, selecting the proper transformation set in which to put a transformer
should be a simple task. A transformer which replaces an AND expression of no arguments with
the atom T should of course be put in the *AND* set, a transformer to simplify the expression
(APPEND FOO NIL) clearly belongs in the ,FCALL* SeL

There are a few subtleties in the decision brought on by the fact that some structures betray

their context by their type. The type name *CLAUSE*. for example, gives away the fact that it
represents a subtree found only as an argument to a *COND*. A *CLAUSE* structure will always
have a .COND* structure as a father. Should we allow transformations to deteriine the context of
a structure by checking its type? Consider the following transformation rule:

(1) (COND <clauses-l> (T (COND <clauses-2>)))
=> (COND <clauses-I> <clauses->)

The final clause of the outer COND is being replaced by the clauses of the inner COND. That is,
one *CLAUSE* subtree is beiig replaced by many. Should the transformer %hich implements this
rule be a member of the *COND* transformation set, or could we include the transformer in the
*CLAUSE* set by rewriting it?

(T (COND <clauses>)) => <clauses>

Before I answer the question, consider another similar example:

(2) (APPEND <X> (APPEND <Y> <Z>)) => (APPEND <X> <Y> <Z>)

If we put the first transformer in the *CLAUSE* transformation seL shouldn't we also rewrite this

transformer as:

(APPEND <Y> <Z>) => <Y> <Z>

and put it in the *FCALL* transformation set? Obviously we can't, since the fact that
(APPEND <Y> <Z>) is of type *FCALL* does not tell us its context; we have no way of know-
ing whether it appears as the argument to another APPEND or not.

A second reason for keeping the first transformer (and others like it) in the higher level
*COND, transformation set is for the sake of the person who writes the transformations. Why
should that person need to be aware that non-ealuable structure types exist? I have therefore

decided that transformations which require a specific context should appear in the set correspond-
ing to that level of context.
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3.4.3. Interfacing to the Control Functions

Transformers hook into the control functions by means of transformation sets. Recall from
section 3.3.1.3 that we have a different set of transformations for each structure type. Though
it would have been simple to have each set be a LISP list of the names of the appropriate trans-
formers (and then map over that list), I saw no reason why I shouldn't just implement each set
as an implied PROGN. Thus, the function definitions shown in Table 3-7 are actually transforma-
tion sets. A transformer may be added or removed simply by inserting or deleting the call from
the set, remembering that the order in which the calls occur in a set is the order in which those
transformers will be applied.

Notice that all transformers are called via the function XFORM, and all return information via
the function RESPOND. Currently these two functions do nothing more than a FUNCALL and
return a LIST of their arguments, respectively (and then upon receipt of the response, XFORM
causes the result to be substituted f)r the original code by side-effecting the internal form), but
in the future we will cause more complex things to happen. In any case, I here establish the

convention that:

(I) No transformer may be called directly, but via XFORM only.

(2) No transformer may respond directly, but via RESPOND only.

The significance of this is that a transformation which iterates within itself must break one of
two rules. If it calls itself again via XFORM, it is breaking the rule that no transformer may call
another (remember that XFORM is dependent on the fact that no transformer is called between the
time XFORM calls one and receives its response). But if it calls itsclf without the use of XFORM, it
breaks the rule stated above. The solution is in the way we view the problem. I shall define a trans-
formation which is implemented via an iterating transformer to be incomplete until the iteration
ends. Thus, while a transformer may call itself directly, it does so only with the understanding that
when it finishes, one transformation has been applied, regardless of the number of iterations the
transformer made.

To call a tranformer which requires global information, the programmer simply includes in
the call as additional arguments the environment and the index of bindings. These are usually

bound to ENVIRON and FTLIST, respectively, within each transfonnation set. Compare the calls
to AND! T R IM and AND I SIMPLIFY in the transformation set for the *AND. expression structure
type given in Table 3-7.

_ ,ok.*
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3.4.4. Slave Transrormers

hlere are a number of cases A hich arise when writing transformations in which changes must
be made only to a subtree of the input expression, even though the entire expression was needed in
order to determine whether the transformation should apply. Consider the transformation in which
actual arguments are substituted for dummy arguments in a lambda expression. The code to be

transformed might look like:

((LAMBDA (FOO BAR)

(COND ((NULL FOO) BAR)
(T (CONS FOO BAR))))

(QUUX S) S)

The transformer decides after looking at the complexity of the actual arguments ((QUUX S) and
S) and the use of the dummy arguments in the lambda expression, that S should be substituted for
every occurrence of BAR. The resultant expression to be returned will appear as:

((LAMBDA (FOO)
(COND ((NULL FOO) S)

(T (CONS FOO S))))

(QUUX S))

Only the following expressions arc affected:

* the top level .FCALL, expression which now calls a function of only one argument.

* each of the .ATOM. structures representing an occurrence of BAR, both in the dummy argu-
ment list of the lambda expression and in its body.

e the *ATOM* structure representing the original occurrence of S as one of the arguments to the

top level *FCALL*.

We wish to localize the transformation so that only those sub-expressions affected by the transfor-

mation are transformed. Ihus, I have invented the notion of slave transformations, which may
be called by a transformer to change some subtree of the input expression. Sla~c transformers
have their own XFORM-SLAVE and SLAVE-RESPOND functions which operate much the same
as their counterparts. with the exception that the successful application of a slaxe transformer does
not increment the clock. [his allows the above described transformation to appear to happen all at

once as far as transformation time is concerned' that is. it constitutes one transformation.

Another use for slave transformers is for the recording of success or failure for transformers
which iterate. Recall from section 3.4.3 that the application of an iterating transformer is said to
constitute only one transformation. That means that regardless of the number of iterations, only

one history may be updated with success or failure. Slave transformers allow success or failure to
be recorded for each iteration. '[his use (and perhaps other uses as well) of slave transformers may

result in no change being made to the input expression other than transformations upon its sub-

expressions.
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A slave transformer should be used to perform the following transformation:

(COND <clauses-I> (T (COND <clauses-2>)))

=> (COND <clauses-I> <clauses-2>)

The final clause of the outer conditional is being replaced by the clauses of the inner conditional.

That is, one *CLAUSE* structure is being replaced by many. As discussed in section 3.4.2, this
transformer appears in the *COND* transformation set. Rather than create and return a new list of

the correct clauses, the transformer should call a slave transformer on the final clause of the outer
conditional above which returns the list of *CLAUSE. structures <clauses-2>. This strategy
assures that transformations occur as locally as possible, so that expressions which are not changed
remain untouched by the system (a principle we shall understand better in the next chapter).

As another example of the locality of transformations, consider the rule:

(COND <clauses-i> (NIL <exitform>) <clauses-2>)
=> (COND <clauses-l> <clauses-2>)

This transformation deletes a clause which will never be evaluated, because its predicate is known
to be false. No other clause is affected by the transformation. TFhe transformer which imple-
ments this transformation should appear in the *COND* transformation set because it requires

the specific context of a conditional expression to apply. In order to preserve the locality of the
transformation, the transformer calls a slave transformer on the clause with the false predicate. The
slave transformer returns a "'nothing" flag, causing the deletion of the clause from the parse tree of

the conditional expression.

3.5. Summary

I have, kept the transformational component of the system as simple as possible. It is written in
IISP, and is able to control the transformation of applicative LISP code only. SEXPR ! EXPAND is

the driver control function for the system, and will accept as input any evaluable LISP expression,
along with the current environment and list of bindings (both of which are usually empty at the
very beginning). This function parses the expression and hands it over to the specific control
function for its structure type. The expression is then transformed in the same order as it would
be evaluated by a I.1SP interpreter: an ordered set of transformations is applied to the top level of
the expression only after its parts have been transformed. Whenever a conditional expression, AND,
OR, or an ASSERT is encountered, the environment is updated: whenever an internal lambda
function is encountered, the index of bindings is updated. These two sources of information are

maintained as a service to allow global transformations to apply. All transformation occurs via the

function XFORM only, and transformations return information via the function RESP04D only.
Slave transformations should be used to maintain the local transformation of LISP structures.



Chapter Four

The Accountable Component

fl{ AVING A COMPLITE IMPLEMENTATION of the transformational component we can now

implement an accountable component to accompany it. 1 purposely discussed the design
of an accountable system before the implementation of the transformational component so that I
could not be accused of limiting my plans for the system. Many of the implementation decisions
made in the last chapter in the name of simplicity were made not to avoid issues in the implemen-
tation of an accompanying accountable component, but to save time and effort in implementing
the transformational component. As will be demonstrated, the accountable component is largely
independent of the implementation of the transformational component.

The issues we must resolve in the remainder of the thesis include:

* acquisition of information,

- -• . storage of information, and

* retrieval of information.

The first two points fall under the jurisdiction of tie recording element. In particular, after

* :reviewing the nature of the information we have decided to collect as discussed in section 2.4, we

must rewrite the definitions of the functions XFORM and RESPOND to obtain the information.

Then we will discuss a means of storing this information by augmenting the internal form of the
argument program.

'rhe last item on the agenda is the responsibility of the query element. Here we must finally

retrieve the information at the command of the user. We will see that merely offcring to "replay"
specified sections of the transformation process can be fairly useful. though trying to outguess the

user by providing the answers to more general questions might be more inleresting.

57
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4.1. Acquisition of Information

Recall from section 2.5.1 our summarization of the recording element's task:

" Transformations must include in their description a set of input and output assertions, available
upon request.

The motivation for this requirement was to couple this information with the truths for a
particular piece of code in order to determine why a transformation failed or succeeded. For

example, if a transformation T requires properties a, b, and c. but only a and b are true at
some point, we may assume that T failed because either c was false or unknown.

Since we have chosen to implement transformations as procedures, they can be made to

return the reason they failed or succeeded themselves. We will therefore let the procedure

definition stand as the description of input and output assertions for a transformation, and
require that transformers return justifications for their actions.

" Before any transformations apply, a set of truths for each piece of code (dependent on its
context) must be collected and recorded along with their justifications. That is, before any
transformation applies to a particular piece of code, truths for that code must be recorded.

I nis is the environment, and we have discussed it in the last chapter. We do need to add the

justifications: we will require that ENVI RECORD-TEST be given a justification for the truth it
is to record, and record that justification along with the test. If ENV! RECORD-TEST does any
fanc logic it should augment the justification it is given with a note to that effect. Similarly,

ENV! ADD-TEST should justify any truth it adds to the environment.

Though the environment and its index of bindings could have been stored as part of the

internal form of the program during the implementation of the transformational component,

they were instead created and maintained as separate variables which were passed from control
function to control function, and finally to the transformation set to be used by the transformers.
The acc ountable component, however, must record the environment and index used for the

transformation of each expression so that its information is not lost once the transformation set
is exited, as is the case now. It will do this immediately after a transformation set is entered.

" After each transformation is attempted, it must provide to the recording element the following
information:
(I) ishat code it attempted to transform;

(2) sihethcr or not it was successrul;

(3) if it Aas successful, the resultant code.
Since all transformations are called via the function XFORM, and XFORM is responded to via
RESPOND. XFORM must already know (1). since XFORM obviously passes the transformation the
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Transformer
(DEFUN OR!SIMPLIFY (ORTST)

(COND ((ARGS!NULL? (OR!ARGLIST ORTST))
(RESPOND I (SEXPRICOPY FALSE) (JUST!CREATE 'l(OR) => NILI NIL)))

((ARGS!ONE? (OR!ARGLIST ORTST))
(RESPOND T

(ARGS!ARG (OR!ARGLIST ORTST))
(JUST!CREATE 'I(OR <x>) => <01~ NIL)))

(T (RESPOND NIL ORTST (JUST!CREATE 'mno patterns match.1 NIL)))))

;,Transformer
(DEFUN FCALL!SIMP-NOT (NULLTST)

(CONO ((NOTEXPR? NULLTST)J
(LET ((LOGARG (ARGS!ARG (FCALLIARGLIST NULLTST))))

(COND ((NULL? LOGARG)
(RESPOND T

(SEXPR!COPY TRUE)
(JUST!CREATE 'I(NOT NIL) => TI LOGARG)))

((TRUE? LOGARG)
(RESPOND T

(SEXPR!COPY FALSE)
(JUST!CREATE 'I(NOT T) z> NILI LOGARG)))

(T (RESPOND NIL
NULLTST
(JUST 'CREATE

1Ithe arg to NOT or NULL is unknown.1
NIL))))))

(T (RESPOND NIL NULLTST (JUST!CREATE 'mno patterns match.I NIL)))))

TABI E 4-I. Transfrmnations must return justifications.

(DEFUN RESPOND (APPLIED? OBJECT JUST)
(CON) ((NOT APPLIED?) (LIST **RESPONSE** **FAILED** JUST))

(T (LIST **RESPONSE** OBJECT JUST))))

TAnI.E4-2. New definition of RESPOND.

code to transform. So there is no nced for a transformation to explicitly return that information.
Currently a transformer already supplies thc information required by (2) and (3): if it fails it
cxecutcs the form (RESPOND NIL <input expression>), and if it succecds, it cxccutcs the
form (RESPOND T <resultant expression>).

Trans fbrmations are required to return a three-valued response. then: a nlag signifying
whether or not they succeeded (T or N IL, respectively), the reSUltant expression, and a justification
for the success or fatiltire.T[le new definition of' RE SPOND may he seen in Table 4-2.
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4.1.1. Justifications

A justification consists of an explanation, and optionally, an expression. It may either justify

a transformer which succeeds or fails, or justify the addition of a piece of common contextual
information to the environment. In the first case, its explanation is a brief phrase which completes

the sentence "This expression was transformed because... or the sentence "'I'he transformer

<transformer> failed to transform this expression because.. In the second case, its explanation
should complete the sentence "Thais expression's value is <value> because. .. ". If die explanation

refers to some other expression (such as ". .. it is in the true branch of the conditional clause:"),

then that expression may be included in the justification and will be printed when the justification

is displayed.

The expression component of a justification may also serve as a link to previous justifications.

Suppose ENV!RECORD-TEST is asked to record the fact that (AND S T) is true because the
system is about to transform expressions which are "within the true branch of the conditional

clause" whose predicate is that expression. Then ENV! RECORD-TEST will make two separate
entries: that S is true and that I is true, because each of them is "an argument to a true AND
expression." Later, if a transformation succeeds because S is true, it may return the justification

associated with S as its justification. The justification of S as recorded by ENV! RECORD-TEST is
"an argument to a true AND expression"- there is no clue left as to why the AND expression is true!

I solved this problem in the following manner:

* ENV! RECORD-TEST will now record the predicate and justification exactly as it receives them
in addition to recording any pieces of the predicate. This leaves a record as to why the AND

expression is true in the above example.

o When pieces of a predicate are recorded, they are given a justification which consists of an

explanation specifying the nature of the predicate piece ("argument of a true NOT expression",
"argument of a false OR expression", etc), and the expression representing the predicate the

piece came from.

This will allow the query element to perform some simple dependency "backlooking": When a

user wishes to know why S is true, it can print the explanation component of the justification

of S, followed by the expression component, then the justification recorded on the environment
for thal and so on, until the originally asserted expression is found. The new definition of

ENV! RECORD-TEST is shown in Table 4-3.

The function X FORM now has all the information relating to the transformation of an expres-

sion. and only needs to store that infor'mation so that (1) future transformations will see the correct

expression. and (2) the query element can obtain any intermediate version of the expression it

desires At the same time, the recording element must represent this infornation "in an efficient

and accessible manner."
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(DEFUN ENV!RECORD-IEST (ENVIRON TST OUTCOME JUST FTLIST)
(COND
((NULL 151) ENVIRON)
((ATOM? TST)
(ENV!ADD-TEST ENVIRON

(ENV-EL'CREATE (FALIST!SUBLIS FTLIST TST) OUTCOME JUST)))
((ANDEXPR? TST)
(COND (OUTCOME recording a true AND test

(ENV!RECORD-TESTS
* (ENV!ADD-TEST ENVIRON

* (ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) T JUST))
(AND!ARGLIST TST)
T

* (JUST ICREATE [ Argument to a true AND expr.1 TST)
FILIST))

(T (ENVIADD-TEST ;recording a false AND test
ENVIRON

ENV-EL!ICR EATE
(FAL 1ST ISUBLIS

FTLIST
(LET
((REFINED

(ARGS!REFINE (AND!ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!ONE? REFINED) (ARGS!ARG REFINED))

(T (AND!CREATE REFINED)))))
OUTCOME

* JUST)))))
((OREXPR? TST)
(COND (OUTCOME recording a true OR test

(ENV!ADD-TEST
ENVIRON
(ENV-EL!ICREATE

(FALIST!SUBLIS
FTLIST
(LET
((REFINED

(ARGS!REFINE (OR!ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!ONE? REFINED) (ARGS!ARG REFINED))

OTOE(T (OR!CREATE REFINED)))))

* JUST)))
(T recording a false OR test

*1 (ENV!RECORD-TEsrs
* (ENVIADD-TEST ENVIRON

* (ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) NIL JUST))
(OR!ARGLIST TST)
OUTCOME

* (JUST!CREATE ' lArgument to a false OR expr. I TST)
FTLIST))))

((NOTEXPR? TST) strip oft NOT and toggle outcome
(ENVIRECORD-TEST

* * (FNV!ADD-TEST ENVIRON
* (ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) OUTCOME JUST))

(ARGS!ARG (FCALL!ARGLIST TST))
(NOf OUTCOME)

* (JUST!CREATE 'lArgument to a NOT expresslon.1 TST)
FTLIST) )

(T (INV!AO)D-TES1 ENVIRON (ENV-EL!CREATE
(fALISI!SUIIIIS FILIST 151) OUCOME JUST)))))

TAmiJ 4-1. ]be environneici must now 1niitinain justi ficat ions for its entries.
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4.2. Storage of Information

Before we consider a means of storage for the information in hand, let's think quickly about
the nature of its retrieval. A programmer who submits his code to the accountable system will be

interested in observing its effect on his program. Thus, he will ask questions about specific sections
of code. One who has written a new transformation may test it with a random program, and then

ask questions pertaining to the actions of that transformation. And someone who is coi~ccned
with the order of transformation application will ask questions about what happened at wL, -..-:!

There are then three possible indicies: the code transformed, the name of the transforme,, or
time of transformation. We will use them all.

4.2.1. By Code

If the transformational component of the system were to be run without any accountable
capabilities, it could simply replace any subtree of the parse tree with the new one whenever a
transformation applied. But the accountable component will remember e cry intermediate version

of the program. If there are fifty different versions (because there were fifty successful transforma-
tion applications), storing fifty different parse trees is clearly not efficient, whether the program is
large or small. Instead, I have chosen to augment the internal form of the parse tree by allowing
multiple versions of each subtree. When a transformation applies, the resulting subtree is added to

the parse tree as version n + 1. We can write a special printer which, given the entire tree and a
vcrsion number. will print the appropriate subtree when it arrives at a node in the parse tree which

-3. has more than one. This printer really constitutes a translator or conversion routine between the
internal forrm and the executable source code.

At each node of the parse tree is a structure called a CELL. Cells contain (as well as other
information which we will mention later) a list of the different subtrees for this node, initially this
list contains only one subtree. Fach subtree is represented by a structure called a MONK. Every
successful transformation causes a MONK to he created. Because we want to record unsuccessful

transformations as well, we "ill create a structure called a HERMIT whenever one fiils. Besides the
suhtree it rer-csents, each MONK contains a version numher, the name of the transformer which
cremted it, and the justification for that transformaition. ach HE RM IT contains the version number
of the subtrce which wasn't transformed, the name of the transformer which didn't transform iL
and a justification for the failure.

MAN
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(DEFUN XFORMER!RECORO (XiORA4ER CELL VERSION)
(PUTPROP XFORMER (CONS (CONS VERSION CELL)

(GET XFORMER 'APPLIED)) 'APPLIED))

(DEFUN XFORMER!RECOROF (XFORMER CELL VERSION)
(LET ((FAILS (GET XFORMER 'FAILED)))

(CONO ((NULL FAILS)
(PUiPROP XFORMER (LIST (CONS VERSION CELL)) 'FAILED))

((> (CAAR FAILS) VERSION)
(ERROR IFails out of order.1 XTORI4ER))

((< (CAAR FAILS) VERSION)
(PUIPROP XFORMER (CONS (CONS VERSION CELL) FAILS) 'FAILED))

((MEMQ CELL (COAR FAILS)) NIL)
(T (PUIPROP XFORMER

(CONS (CONS VERSION (CONS CELL (COAR FAILS)))
(CDR FAILS))

'FAILED)))))

TABLE 4-4. Functions which record infonmation by transformer name.

4.2.2. By Transformer

If someone were interested in the activities of transformer T, pointing thern to each CELL
transformed by T and gi ing them the time of eachi transfonination would be enough to allow
them to thcn ask for any other information that might be stored in thc cells. XFORMER! RECORD

takes the name of a tranisforner, die argument cell, and tie current tinic, and records dhe fact that

that transformner affected the said cell at the given time. XFORMER ! RECORDF records the same
information for transformat ions that fail. ('[hle definitions of these t'o functions are given in TFable

4-4.) Note that this is a record of whether or not a iransfornrsucceeds. Recall that a transformer

can implement more than one transformation rule. If any rule Succeeds, the transformer is said to

succeed. Only if all the rules implemented by a transformler fai dostetasoMer fail.

4.2.3. By Version

We can index the information by version' in much the same way as by transformner.

CLOAKRACK ! HANG -UP maintains an association list of transformation times and cells transformled

at those times (called thle "cloakrack", because a monk hangs up its cloak before entering the

cell). RAGRACK ! HANG-UP maintains a similar association list for transformations Miicli fail. Its

definition differs in that many transformations may fil during the saiiie transformation time since

the clock is not increincnted until a transformation succeeds. I claim that it is relati~ ely unimpor-

tant to keep track of which transformation fails before another, because no subtice changes. If

I I will usc the tois '.rui arid "transffrntmion ic" ilrt haon'cahlN. since %crsion ui of a prqrrai is that
parse lice of the pir'Trani %shich r~scrcated at Iranirforniation ime 1 ,1w . with oric cscvption: wirsion tI is created riot
by tran.Aornrauon hut hyr conk'crsion to the internal form.
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(DEFUN CLOAKRACK!HANG-UP (CELL VERSION)
(SETO CLOAKRACK (CONS (LIST VERSION CELL) CLOAKRACK)))

(LIEFUN RAGRACKM!ANG-UP (CELL VERSION)
(CONI) ((NULL RAGRACK) (SF10 RAGRACK (LIST (CONS VERSION CELL))))

(T (LET ((V (CAAR RAGRACK)))
(COND

((> V VERSION)

(ERROR IlRagrack out of order. I))
((< V VERSION)
(5110 RAGRACK (CONS (LIST VERSION CELL) RAGRACK)))
((Mtf!IQ CELL (CLIAR RAGRACK)) NIL)
(I (SE TQ RAGRACK (CONS (CONS V (CONS CELL (CLIAR RAGRACK)))

(CDR RAGRACKf)f))

lrABLE 4-5. Definitions of functions which record information by version.

(DEFUN XFORM (IORMER CELL ARGS)
(LETI ((RESPONSE (APPLY XFORMER (CONS CELL ARGS))1)

(COND ((APPLIED? RESPONSE)
(CELL!SIORE-MONK CELL (RFSPONSE!HAC( RESPONSE CELL XFORMER))
(XFORMER!RECORD XFORMER CELL XFORMTIME)
(CLOAKRACK!IIANG-UP CELL XFORMTIME)
(XFORMTIME!IINCR))
(T (CELL!STORF-HER41T CELL (RESPONSE'IIACKF RESPONSE KEORMER))

(XFO~rt14R!RLCORDF XFORMER CELL XFORMTIME)
(P.1GRACKMIANG-JP CEIL )FORMTIME)))))

IAntiU4-6. Final definition of XFORM. ____________

transformers T - 1 and T - 2 both attcmpt to transform expression E and both fail, it is imimaterial

\Ah!ich failed first. E~xpression E remains the same before, after, and during hoth attempts. The

definitions of CLOAKRACK ! HANG-UP and RAGRACK ! HANG-UP are shown in Table 4-5.

4.2.4. The Finial Version of XFORM

We can now complete otir definition of XFORM by adding calls to functions 'Allich will store
the coiccted information. Look at Table 4-6. RE SPONSE ! HACK takes tile res;ponse, the cell which
".as transformed, and the name of the transformler. and creates a MONK "hich is then stored in

die transformecd cell. After creating~ cross-references to this infonmation by transformer and trans-

fOrination time, the "clock" is incremented in order to be ready to pro\ ide the time (version)

for tile next trair~formation. If a transformaltion Fails, first RE SPONSE !HACK F creates a HERMI T

w ill flformaition pertaininig to thle attempt, and rUnit 11 thle HE RMI T thr storage ill the cell. Ilien

the information is again cross-ivferenccd h\ tiransOnner and tianJ"Mmnation timec, but the clock is

tw incremrented. 'Ihle definlitions, of RE SPONSE ! HACK and RE SPONSE ! HACKF fwill be discussed
later.
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(DEFUN SEXPR!CONVERr-TO-x (SEXPR)
(COND ((CEtt? SIXPR) SEXPR)

((ATOM? SEXPR) (AIOM!CONVIRT-TO-X SEXPR))
((DEFETIE? SEXPR) (DEFETIL!CONVERT-TO-X SEXPR))

((QUOTE? SEXPR) (QUOTE!CONVERT-TO-X SEXPR))
((CUND? SEXPR) (COtJD!CONVERT-TO-X SEXPR))
((ANOEXPR? SLXPR) (AND!CONVERT-TO-X SEXPR))

((OREXPR? SEXPR) (OR!CONVERT-TO-X SEXPR))
(T (FCALL!CONVERT-TO-X SEXPR))))

(DEFUN ARGS!CONVERT-TO-X (ARGLIST)

(COND ((NULL ARGLIST) (LIST (NOTHING!CREATE)))
((CELL? (ARGS'ARG ARG

L
IS

T
)) ARGLIST)

(T (MAPCAR (FUNCTION SEXPR!CONVERT-TO-X) ARGLIST))))

(DEFUN ATOM!CONVERT-TO-X (AT)

(COND ((CELL? AT) AT)
(T (CELL!CREATE AT **ATOM** 'ATOM!CONVERT-TO-X))))

(DEFUN BINDING!CONVERT-TO-X (DARGS)

(COND ((CELL? DARGS) DARGS)
(T (BINDING!CREATE (ARGS!CONVERT-TO-X DARGS)))))

(DEFUN DEFETTE!CONVERT-TO-X (DEF)
(COND ((CELL? DEF) DEF)

(T (DEFETTE!CREATE (ATOM!CONVERT-TO-X (DEFETTE!NAME DEF))

(BINDING!CONVERT-TO-X (DEFETTE!BINDING DEF))
(SEXPRtCONVERT-TO-X (DEFETTE!BODY DEF))))))

TABL.l4-7. Functions for convening to the internal form.

4.3. A Look at Cells

A cell contains the "history" of a subtree of a parse tree. It charts the transformation of that

subtree via its list of monks, each of which points to a diffcrent version. The subtree itself con-
stitutes a parse tree though, so each of its subtrees arc kept track of by cells and monks. The use of
cells as the internal form of the argument program raises a number of issues regarding conversion
to and the transformation of that form.

4.3.1. Conversion to the Internal Form

Transfonnations may operate only on cells, since XFORM expects to get a cell into which it
can store a new monk. 'I hus. every subtrec %&hich might be a candidate for transformation must be
converted to a cell. We havc already decided \%hich L.ISP structures to provide \with transformation
sets (in section 3.3.1.3). Wc will represent each of the structures whose t\x pes are defined by the
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I "FUNCNAME" F A'FCALL"I I

cons IIII
I'FUNCNAME'I 'FUNCNAME'I I'FCALL'I E'AT  " I

car x append y

*-FUNCNAMAE* TO

I I

FIGURE4-1. Cell representation of (CONS (CAR X) (APPEND (CDR X) Y)).

trdnsformational component (and given in Table 3-5 (page 39)) as cells of the same type. Cells are

used not only to represent LISP code, but to contain some useful information about that code as

well.

4.3.1.1. Cell Types

'The cell representation of the expression (CONS (CAR X) (APPEND (CDR X) Y)) is

illustrated in Figure 4-1. Each atomic symbol of the expression is a leaf of the tree, and may be

eitheroftype *ATOM. or *FUNCNAME..

What about the few remaining pieces of I.ISP code which are not typed? Consider the dummy

argument list ofa function definition, or the special form headers COND. AND, OR, QUOTE, etc, My

decisions on these issues were made as follows:

(1) The dummy argument list will be represented as a cell of type *BINDING* een though trans-

formations arc unlikely to apply to the cell. Representing the list as a cell A ill cause a function

definition (a .DEFETTE. cell) to consist of a list of three cells: *IUNCNAME.. .BINDING.,

and a body which may be any exalhable structure tipe. and thus it cell itself.

(2) Special forms each have their own cell type, and thus the header itself need not be made a

cell. Instead. cach cell's monk contains a list or the argunents to the special form. Thus, a

*COND* cell's monk contains a list of *CLAUSE* cells, an *AND* cell's monk contains a list
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(DEEIJN SEXPR!CONVERT-FROM-X (SEXPR &optional VERSION)
(COND
((NOT (CELL? SEXPR)) SFXPR)
(I (LET ((TYPE (SEXPRIIYPE SEXPR VERSION)))

(COND
((EQ esATOM.. TYPE) (ATOM!CONVERT-FROM-X SEXPR VERSION))
((EQ **FUNCIJAMF** TYPE) (FUNCNAME!CONVIRT-FROM-X SEXPR VERSION))
((EQ **BINDING** TYPE) (BINDING!CONV[RI-FROM-X SEXPR VERSION))
((EQ *.OEFETTE*. TYPE) (DEFETTE!CONVERTdIROM-X SEXPR VERSION))
((Q .sQUOTE.. TYPE) (QUOTE!CONV[RT-FROM-X SEXPR VERSION))
((EQ **COND.. TYPE) (COND!CONVERT-FROM-X SEXPR VERSION))
((EQ **CLAUSE** TYPE) (CLAUSE!CONVERT-FROM-X SEXPR VERSION))
((EQ **AND** TYPE) (AND!CONVERT-FROM-X SEXPR VERSION))
((EQ **OR** TYPE) (OR!CONVERT-EROM-X SEXPR VERSION))
((EQ **FCALI.. TYPE) (FCALL!CONVERT-FROM-X SEXPR VERSION))
(T (ERROR IUnknown type -- SEXPR!CONVERT-FROM-Xi SEXPR)))))))

(DEFUN ARGS!CONVERT-FROM-X (ARGLIST .ARGLISTVERSION.)
(DECLARE (SPECIAL *ARGLISTVERSION*))
(COND ((ARGS!NULL? ARGLIST *ARGLISTVERSION.) NIL)

((CELL? (ARGS!ARG ARGLIST *ARGLISTVERSION.))
(SEXPR !MAPCAR

(FUNCTION (LAMBDA (EXPR)
(SEXPR!CONVERT-FROM-X EXPR *ARGLISTVERSION.)))
ARGLIST
*ARGLI151VERSION.)

(T ARGLIST)))

(DEFUN ATOM!CONVERT-FRO4-X (AT VERSION)
(COND ((CELL? AT) (SEXPR!TREE AT VERSION))

(T AT)))

(DEfUN BINDING!CONVERT-FROM-X (BINDING VERSION)
(COND ((NOT (CELL? BINDING)) BINDING)

(T (BINDING!CREATE
(ARGS!CONVERT-FROM-X

(BINDING!DARGLIST BINDING VERSION) VERSION)))))

(DEFUN DEFETTE!CONVERT-FROM-X (DEF VERSION)
(COND ((CELL? DEF)

(DEFETTE !CREATE
(ATOMICONVERT-FROM-X (DEFETTE!NAME DEE VERSION) VERSION)
(BINDINGICONVURT-FROM-X (DEFETTEU!NDING DEF VERSION) VERSION)
(SEXPR!CONVERT-FRDM-X (DEFETTE!BODY DEF VERSION) VERSION)))

(T DEF)))

TABLE 4-8. Functions for converting from the internal form.

of ev altiablc cells. etc. We arc therefore allowing cell types to take thc place of actual code.

That is. COJD, AND. OR. etc, will never appear as Imaes of the parse tree.

'I he rither pleasant rcsuilts of th~cse two decisions is that the subtree contained in any cell'sI
monk is either an mtom, ai cell, or a list of cclls, with the exception of tie *QUOITE* cell,
whose monk nm. conlain anyv bare s-expression. Whatever that s-expression is, the conversion
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(DEFUN CELL!CREATE (SEXPR YPE VERSION CREATOR)
(LET ((ID (INTERN (MYGENSYM 'CELL))))

(LET ((NEWCELL
(LIST **CELLe

ID
(LIST (BPLIST!CREATE)

(RANGE!CREATE VERSION VERSION)
(BVAL!CREATE NIL NIL NIL)
NIL slot for environment
NIL) slot for index of bindings

(MONK!CREATE TYPE VERSION SEXPR CREATOR
(JUST!CREATE 'IlFirst monkl NIL) NIL))))

(SET ID NEWCELL)

(CELL!INSTALL-BACKPOINTEES NEWCELL))))

(DEFUN MONK!CREATE (TYPE VERSION SEXPR XFORtER JUSTIFICATION PTCPOINTER)
(LIST **MONK** TYPE VERSION SEXPR XFORMER JUSTIFICATION PTCPOINTER))

TABLE 4-9. The functions which create cells and monks.

routines won't touch it. Fable 4-7 and Table 4-8 show some of the conversion functions.

SEXPR!CONVERT-TO-X and SEXPR!CONVERT-FROM-X are driver functions which convert

any s-expression to or from the internal form, respectively.

'[he type of a cell is stored in the monA which represents it, since ransformation of

a subtree may result in its being of a different type than before. For example, the rule

(COND (T <X>)) => <X> changes the parse tree of (COND (T (CAR FOO))) from type
COND to type FCALL. 'Ihe type of a cell is defined to be the type of the most recent monk.

4.3.1.2. Cell Creation

The function CELL !CREATE creates a cell. It requests the subtree and type to be installed

in the first monk, and the name of the function requesting the creation. 'The first monk of each

cell is the one given at creation, and always has version 0, whether it was created during the trans-

formalion process or during the initial conversion of the L.ISP program to the internal form. This
will not raise ambiguities when converting back to executable I.ISP code, since c~en though a cell

may ha'e a 0 version monk. it can not be reached if its parent cell doesn't point to it at time 0.

Consider, for example. the transformation that replaces a function call by its definition. Suppose

*FUNCNAME* cell CELL-33 is FOO at time 3, and at time 4 is replaced by the lambda expression

(LAMBDA (X) (CAR X)). Then every subccll containing a subtrcc of the lambda expression

will be at version 0 since the expression is newly copied before replacement. Printing CELL-33

at time 3 will produce FOO though. not the lambda expression, because the version 3 monk of

CELL-33 points to FOO.

.. .. , -- v-- .---.. s --- -s
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It is useful to be able to "back-up" to the father of a cell, and to the father of that cell, and so

on, if desired. Since which cell is the father of another cell changes as transfomiations apply, it is

not sufficient to maintain a single static back-pointer for each cell. Instead. when a cell is created

it is given a back-pointer list, initially N I L. However. the back-pointer list of each subcell is made

to point to the newly created cell. A back-pointer consists of a cell and a version number. To

obtain the back-pointer of a cell we use the function CELL ! BP. which takes a cell and a version

number and returns the back-pointer of the cell for that point in time. Suppose, for example, that

CELL-45 has the back-pointer list:

( (23 . CELL-88) (14 . CELL-23) (11 . CELL-23) (10 . CELL-4)

'hen (CELL!BP CELL-45 15) will return the back-pointer (14 CELL-23). The function

BP!CELL will return the cell ofa back-pointer. Then (BP!CELL (CELL!BP CELL-45 10))
will return CELL-4. If the back-pointer of CELL-45 is requested for some version less than 10,

CELL! BP will return NIL, indicating that CELL-45 had no father at that time.

Recording the back-pointers of a cell will allow us to easily implement the function

CELL! FATHERS. "llis function takes a cell and a version number and returns a list of the cell's

cu.rent ancestors; that is, a list of all the cells currently on the direct path from the given cell to the
root cell of the parse tree.

At creatimn, each cell is given a "range", which allows us to determine the times at which it

or any of its subcells underwent transformation. A range consists of a minumum and maximum

version, both of which are 0 at creation. If a transformation applies to CELL-45 at time 5, the

range's maximum is changed to 5, and every range of the transformed cell's current ancestors is

updated as well. Hence, if in the end CELL-45 has a range with minimum 5 and maximum 49,
we know that every transformation which occurred from time 5 to time 49 applied to CELL-45 or

one of its subcells.

Though the initial monk of a cell always has version 0, 0 is not included in the range. This

is because the I.lSP program tree which is input to the transformation system is converted to the
cell internal form representation all at once, immediately giving every cell a monk of version 0. But

transformation only begins at one subtree of the parse tree, and brothers of that subtree are not

transformed until later. To maintain the continuity of the range indicated, we define the minimum

of a cell's range to be only the time of the first actual transformation to reach that cell or one of its

subells.

Two slots are left open in a cell at its creation for the eventual storage of its environment

and index of bindings. "lhese will be installed immediately before transformation of the cell is

attempted. The function SEX PR! RE CORD- E NVDE X is called within each transformation set, and

will cause the two structures to be stored in the input cell. Although the transformers do not

access this common contextual information via the cell they transform, they could if they knew
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how. However, it seems cleaner to keep them uninformed about the temporary duplication of
information. Later, when the transformation process ends and a user wishes to obtain common

contextual information about an expression, it will be provided him from the copy retained in that

expression's cell.

4.3.2. The Transformation of Cells

How is it possible to neatly package the history of each subtree of a program into its own
cell, given that any number of unspecified transformations will be engaged in collapsing code or

moving pieces of the program from place to place? In an attempt to avoid having more than one
cell to represent a particular node of the parse tree, yet at the same time maintain the integrity of a
node's history, I have developed special monks which keep cells clean and tidy. These monks are
created as needed by RESPONSE ! HACK; the transformers need not concern themselves with such
low level details. Indeed, the transformers know nothing at all of the internal representation of the

argument program.

When a transformer is called via XFORM, it is passed the cell to be transformed, and, if the

transformer performs a global transformation, the environment and index of bindings as well. The

transformer's response consists of a success/fail flag, the resultant expression, and a justification. If
the transformation fails, it returns the same cell as was input. Otherwise the returned object must

be either:

(1) the same cell given to the transformer (the "input" cell),

(2) a cell which is a "subcell" of the input cell,

(3) a newly made cell, perhaps copied from elsewhere in the tree,

(4) a list of cells, or
(5) nothing.

I will treat each of these cases in turn, after which we will discuss the completion of histories.

4.3.2.1. 7ransforners Which Call Slaves

If the cell returned from a transformer is the same as the input cell, the transformer must have

called slae transformers to perform a local transformation. In this case. a new monk of the same
type as before will be created and installed in the input cell. Though the subtree pointed to by the

new mtn)X is the same one the last monk pointed to, the new monk carries with it the new version
number. tran,formation name, and justification, signifying that a transformer did apply to the cell,

An, transformation performed by slave transformers will have been recorded in the cells
which were input to those slave transformers, thereby updating only the histories of thc relavent

subcells, and leaving other subcells of the parent transformation cell both unchanged and

*1
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(DEFUN XFORM-SLAVE (XFORMER CELL ARLiS PTCPOINTER)
(LET ((RESPONSE (APPLY XFORMER (CONS CELL ARGS))))

(COND ((WAS-CHANGED? RESPONSE)
(CELL!STORE-ORK

CELL
(RESPONSE!SLAVE-HACK RESPONSE CELL XFORMER PTCPOINTER))

(CLOAKRACK!HANG-SLAVE CELL XEORMTIME)
(XFORMER!RECORD XFORMER CELL XFORMTIME))

(T (CELL!STORE-HERMIT

CELL
(RESPONSE! SLAVE-HACKF RESPONSE XFORMER PTCPONTER))

(RAGRACK!HANG-SLAVE CELL XFORMTIME)

(XFORMER!RECORDF XFORMER CELL XFORMTIME)))))

(DEFUN SLAVE-RESPOND (APPLIED? OBJECT JUST)
(COND ((NOT APPLIED?) (LIST ,.SLAVE-RESPONSE.. *FAILED* JUST))

(T (LIST ,,SLAVE-RESPONSE,, OBJECT JUST))))

TABLE 4-10. Slave transformations allow the histories of subcells to be updated.

uncopied. The pointers in the parse tree which connect the subcells to the parent cell remain
intact. The use of slave transformers in the transformational component permits the accountable
component to maintain the locality of transformation.

Slave transformers are expected to return success/fail flags, resultant cells, and justifications,
just as their masters do. XFORM-SLAVE installs these in the history of the slave transformer's input
cell, along with a pointer to the parent transformation cell. Every monk has such a "PTC'" pointer;
A non-nil PTC pointer indicates that the transformer which caused the monk's creation was a slave
transformer. In particular, it was a slave to the transformer which created the monk of the same
version contained in the parent cell pointed to. Thus, for example, if CE LL- 14 contains a version

5 monk with a PTC pointer to CELL-59, we know that CELL-59 contains a version 5 monk as
well, and the transformer indicated in that monk was the master of the transformer indicated in

CELL- 14's version 5 monk. The definition of XFORM-SLAVE is given in Table 4-10.

4.3.2.2. Transformers Which Simplify

A transformer which returns a subcell of the input cell was able to simplify the expression by
"bypassing" some part of its structure, as in the rule (APPEND <x> NIL) => <x). (I use the
function CELL ! FATHERS to determine if the cell returned by a transformation is a subcell of the t
input cell. If the input cell is a member of the fathers of the returned cell, then the returned cell is a

subcell.)
low can this returned subcell be incorporated into the input cell? If we install the most recent

monk of the returned subcell as the new monk of the input cell. we confuse the histories of the two

pieces of code. Someone interested only in following the progress of the expression <x> would
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suddenly be left hanging at the point when the transformation occurred, unless some complicated
method of backpointcrs and justifications was concocted. My decision was to instead create a

special type of monk called a .POINTER.. The cell which represents <x> is left unchanged,
just as the expression itself was untouched by the transformer. The new monk is installed in the
input cell along with the normally recorded information. The subtree of this *POINTER. monk,
however, is the <x> cell. The type of the resultant input cell is defined to be the type of the object
of the *POINTER* monk, and someone interested in following the history , ne input cell, upon
confronting the *POINTER*., continues his study by picking up the history of the <x> cell at the
time the transformation occurred. The history of the <x cell, however, remains totally contained
in that cell (unless it, too, is simplified to point to a subcell), and is oblivious to the effects of
transformations performed on cells above it in the parse tree.

4.3.2.3. Transformers Which Replace

A transformer which returns a new cell, perhaps copied from an expression elsewhere in the
parse tree or newly created, intends for the subtree of that new cell to completely replace the
subtree of the input cell. '[his might occur in situations when an expression is being replaced by
its truth value, when a procedure definition is substituted for a call, or when actual arguments are
bcing substituted for formal arguments, for example. In all cases, the new cell should bc "dccply"
copied (that is, copied at all levels) from its source so that future transformations which apply to
it or its subcells in the new context will not affect the original copy. Transformers which perform
such replacements or substitutions are responsible for providing the new copy of the returned cell
(note the calls to the function SEXPR!COPY in 'able 4-1). Copied cells in some sense begin
their existence at the time of their substitution, and thus are not responsible for the history of the
original cell. 'Thus, the latest monk of the copied cell is installed as the new monk in the input cell,
and the copied cell itself is thrown away. 'lie justification for the transformation should provide the
infornimtion necessary to determine the source of the new cell should the user desire it.

4.3.2.4. Transformers Which Listify

The object returned from a transformer may be a list of cells, indicating that one cell is to be
replaced by many. Under what circumstances might this occur? A transformer which returns a list
of cells is nearly alwa:,s a slave transformer, but since slaves are treated almost exactly as regular
transform'ers, it will not enter into the discussion here. Recall the example given in sections 3.4.2
and 3.4.4 where this occurred with conditional clauses:

(COND <clauses-l> (T (COND <clauses-2>)))
> (COND <clauses-i> <clauses-2>)
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A transformer to do this would be placed in the .COND. transformation set, and after verifying
that the input expression is of the correct form, calls a slave transformer on the final clause K of
the input conditional expression. The slave transformer returns the list of clauses < c I a u se s- 2 .
Clause K should have a special monk installed in its history to show that it now points to the list
<clauses-2. To allow a cell to point to a liv of subtrees, I have created another special monk
called a .POINTER-LIST,.

Another case in which a slave transfornier is used to return a list of expressions is in im-

plementation of the transformation rule:

(PLUS (PLUS <Y) <Z>) <X>) => (PLUS <X> <Y) <Z>)

A transformer to perform this transformation would appear in the *FCALL* transformation set
and apply to the outer function call, but would call a slave transformer on the inner function call

that returns a list of its arguments.

The use of * PO I N T E R- L I ST. monks complicates accessing and conversion functions 'hich
now must be able to suddenly handle a list of subtrees when they were only expecting a single tree.
A special MAPCAR function was writter which checks for .POINTER-LIST. cells before passing
them as arguments to the stated function. Because such system functions must be able to detect
and deal with *POINTER-LIST. cells, the type of such cells is defined to be .POINTER-LIST*,
rather than the type of'the first subtree in the list ofsubtrees pointed to. A user of the accountable
component, however, need not know of their existence, and will receive expected type in formation

in answer to the same query.

4.3.2.5. Transformers Which Delete

A transformer which returns nothing must do so by returning a "nothing" flag, which occurs

in this system as the special variable **NOTHING**. Such transformers currently, must be slaves,
but again, that will not enter into our discussion.

When a nothing flag is returned, a special *NOTHING. monk is created and installed in the
input cell, complete with version number, transformer name, etc, just as though nothing unusual
had happened. The subtree pointed to by a *NOTHING. monk is NIL, and the type of cells Ahich

contain *NOTHING* monks is defined to be *NOTHING.. No transformer can ever apply to such
a cell again since the cell will never be detected: it no longer exists as far as the transformational
component is concerned.

The use of *NOTHING. monks is currently restricted to the case in which the deleted expres-
sion occurred as an element of a list in the program. 'That is, as ain element of an argument list
to a function call, a dummy argument list, a list of conditional clauses, etc. This allows system
functions which manipulate cells to correctly ignore the nothing cell, which is actually still very

A
.. '
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much a something. '[his restriction should not hamper the transfonnation implementor, since any
transformation which deletes an object not in a list can be implemented as a transformer which
simplifies (the expressions such transfonners bypass are essentially deleted).

4.3.2.6. Completing Histories

We have discussed the maintenance of cell histories by installing monks with information

regarding the success or failure of transformations to those cells. However. there is another pos-
sibility which I have not yet provided for. It may be the case that a CELL-17 is eliminated
from the parse tree by a transformation. When the resulting parse tree is converted back to ex-
ecutable L.ISP code, CELL-17 will properly be omitted, since it is not pointed to by any of the
current monks of cells ,bove it. However, someone interested in following only the history of
CELL-17 will not be aware of the point at which some cell higher in the parse tree ceases to
reference CELL-17. Reaching the last monk in the cell, that person will assume (and rightly so)
that CELL-17 occurs in the final parse tree as the subtree recorded by that monk.

For example, if the *AND* cell which represents the expression (AND T (CONS X Y))
is replaced by T (assuming that the expression is in predicate position), then the *ATOM* T,
the .FCALL* expression (CONS X Y), the *FUNCNAME* CONS, and the .ATOM.s X and Y
should all have their histories brought to an end. lo do this, I have created a special monk of type
*REPLACED*. '[lhe subtree of this monk is empty, and when installed in a cell simply signifies that
some transformation occurred which caused this cell to be replaced. Whenever a transfonnation
returns a new cell or a nothing flag, the histories of all the subcells of the input cell are completed
by installing the *REPLACED* monk.

Now consider the transformation (APPEND NIL <x>) => <x>. Tiis transformation
b~passcs cells to return a subccll of the input cell, as in section 4.3.2.2. In order to bring the

histories of the *FUNCNAME* cell containing APPEND and the *ATOM* cell containing NIL to
a close. I have created another special monk called a *BYPASS* monk. Again, the *BYPASS*
monk has an empty subtree, and when installed in a cell signifies that this cell was bypassed by a
simplifying transformer and thereforc does not remain in the resultant program.

In general, the history of any cell which becomes invisible to future transformations should
be "corrrpleted' with one of the special monks. 'he transformers themselves are not respon-
sible for this: they need know nothing of the existence of cells at all. since the transformational
component should be oblivious to tie existence of the accountable component. Instead, all
such housekeeping (cell-keeping!) is perfoirmed by the function CELL!TERMINATE, which is
called by RESPONSE !HACK and RESPONSE !SIAVE-IIACK. lhesc latter two are able to deter-
mine which types of' the possihle special mimonks *POINTER,. *REPLACED, *BYPASSED,
*POINTER-LIST*. or ,NOrHING, to create, simply by determining in which of the five

- I . .. Ill .. - ..........



§ 4.3.2.6 A Look at Cells 75

(DEFUN RESPONSEWHCK (RESPONSE INPUTCELL XFORMER PICPOINTER)
(LET
((OBJECT (RESPONSE'OBJFCT RESPONSE))
(JUST (RESPONSE!JUST kESPONSE)))

(COND
((EQ OBJECT INPUTCELL) must have been a master transformer
(COND ((RESPONSE!SI-AVE? RESPONSE)

(ERROR 'ISlaves can't return same cell -- RESPONSE!HACKIf))
(MONK!CREATE

(SEXPR!TYPE OBJECT)
XFORMTIME
(SEXPR!TREE OBJECT)
XFORMER
JUST
**.MAST ERe**)

((CELL!SUBTREE? INPUTCELL OBJECT) ;sign of a **POINTER**
(CELL!STORE-BP OBJECT (CELL!BP INPUTCELL))
(CELL!TERMINATE IIJPITCELL (LIST OBJECT) PTCPOINTER)
(MONK!CREATE **POINTER** XFORMTIME OBJECT XFORMER JUST PTCPOINTER))

((CELL? OBJECT) ;must be a new cell
(CELL!TERMINATE INPUTCELL NIL PTCPOINTER)
(MONK!CREATE (SEXPR!TYPE OBJECT)

XFORMTIME
(SEXPR!TREE OBJECT)
xrFOR MER
JUST
PTCPOINTER))

((CELLIST? OBJECT) ;sign of a *POINTER-LIST*
(MAPC (FUNCfION (LAMBDA (POINTEE)

(CELL!STORE-BP POINTEE
(CELL!BP INPUTCELL))))

OBJECT)
(CELL!TERMINATE INPUTCELL OBJECT PTCPOINTER)
(MOFJK!CREATE **POINTER-LIST** XFORMTIME OBJECT XFORMER JUST PTCPOIHTER))

(T (ERROR IUnknown response object -- RESPONSE!HACKI OBJECT)))))

(DEFUN RESPONSE!SLAVE-HACK (RESPONSE INPUTCELL XFORMER PTCPOINTER)
(LET ((OBJECT (RESPOFNSE!OBJECT RESPONSE))

(JUST (RESPONSE!JUST RESPONSE)))
(COND ((EQ OBJECT **BYPASS**)

(MONK!CREATE **BYPASS** XFORMTIME NIL XFORMER JUST PTCPOINTER))
((OR (EQ OBJECT **NOTHING**) (EQ OBJECT **REPLACED**))
(CELL!IERMINATE INPUTCELL NIL PTCPOINTER)
(MO1JK!CREATE OBJECT XFORMTIME NIL XFORMER JUST PTCPOINTER))
(T (RESPONSE!HACK RESPONSE INPUTCELL XFORMER PTCPOINTER)))))

TABLE 4-11. Functions which perform "cell -keeping".

categories the returned object falls.

The definitions of the functions RE SPONSE I HACK and RE SPONSE ISLAVE -HACK are given

in Trable 4-11. After determining the type of response object returned by the transformTer (same

cell, subcell, new cell, list of cells. etc.), uip to three things happen:
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(DEFUN CELL!IERMINATE (CELL e[ERM-OBJLIST. *TERM-PTCPOINTER.)
(DECLARE (SPECIAL sTERM-OBJLIST. *TERM-PTCPOINtJER.))
(COND

((NULL .TERM-OBJLlST.)
(SEXPR!MAPCAR
(FUNCTION
(LAMBDA (SON)

(XFORM-SLAVE 'SEXPRtA(PLACED

(CELL!CSONS CELL)))
(T (SEXPR!MAPCAR

(FUNPCT ION
(LAMBDA (SON)

(COND ((MEMO SON .TERM-OBJLIST.) NIL)
(I (XFORM-SLAVE 'SEXPR!BYPASS

SON
(LIST)
*TERM-PTCPOINTERs)

(CELL!TERMINATE SON
.TERM-OBJLIST.
*TERM-PTCPOlNTER.)))))

(CELL!CSONS CELL)))))

TABLE4I12. Cell histories are completed using CELL! TERMINATE.

* back-pointers are updated. Thei back-pointer list of the returned object is updated to include

references to the input Cell, since the objcct's subtree is about to be installed in the input ccll via

a new monk.

* the relavent old subtrecs of the input cell are terminated. CELLTERMINATE takes a cell

whose current subcells are to be terminated, a list of subcells of the input cell which are not

to be terminated (it checks each of the former against the latter before terminating), and the

input cell which acts as the parent transformation cell for die termination process. [rhe special

termination monks *BYPASS* and *REPLACE* are installed via system defined slave trans-

formers Oiich use the PTC pointer information. TFhe definition of CELL 1 TERMINATE is given

in [able 4-12.

* the new monk is created and returned to XFORM (or XFORM-SLAVE), which will then install it

in the input ccll.

4.4. Retrieval of Information

At the start of the research for this thesis. I had grand ideas of a system in which the user

haid only to hint at what hie didn't understand about the transformation process. [he accountable

compon ent would immediately understand the source of his confusion and pro\ ide him with the
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information he needed. This, I thought, would be a reasonable goal: scry Al-ish, and much

easier than the even more idealistic goal in A hich the system could detect "unIsual" transformation

situations and explain them without an prompting by the user.

Such goals may $ret be attained, ho or, for the preslet I haic accepted the fact that provid-
ing simple functions for accessing the information stored in cell, and monks Aill haoe to be

sufficient. Given a cell and a transformation time. for example, the funCtion DI SP-JUST will

display the justification for the transformation which occurred to that cell at that time. Or. gi% en a

transformation time, the function LOCATE-NEWCELL %kill return the cell Aich was transformed
at that time. There are a many such functions for retrieving information: their usefulness, however,

is limited to those people who know which ones to call to get the desired information. The user
should be able to request information \ ith the least amount of hassle. Ob iousl then, the retrieval
functions should be packaged up and presented via a menu of some sort.

4.4.1. The Menus

Following the transformation of a list of evaluable s-expressions (the input accepted by the
driver function TRANSFORM), the resulting list of cells (one uWi each s-expression) is bound to the

atom XSEXPR. The transformed cells arc cross-referenced by transformation time in CLOAK RACK,

and cells to -which transfoinmers applied btlt failed are cross- rcferenccd b transformatiol time in
RAGRACK. In addition, a list of the cells and times for which each transformer succeeded or fiiled

to apply has been recorded in the property list associated with the name of that tran,,formcr. To

give the user access to the information stored in these structures, the qucr element presents the
user with a number of choices via the Menu Menu.

The Menu Menu allows the user to select either the Code Menu. the Transformer Menu,
or the Version Menu. Each of these present the user with his choice of code, transformer, or
transformation time, respectively, to be the subject of his query. If he selects the Code Menu.
he may then specify any one of the expressions from the list of those he gase to the function

TRANSFORM. Thus, for example, if he transformed a list of five expressions, he maN enter "3" to
point to the third expression. The 'Iransforner Menu gi\es the user access to statistics concerning

the number of transformers given to the system, the number that merc applied, and how many
always failed or always applied. The user may ask to see a list of the names of the transformers that
fall into any of thes, categories, or enter one transformer name and study its activities. The Version
Menu will tell the user what the final transformation time %as. then request a \ersion number as

input. The expression transformed at that time will be displayed, and the user ma$ continue to ask

questions about that expression, or return to the menu to inquire about it nc\ transformaition time.
A diagram of the menus is given in Figure 4-2.

The functions used to support the menu system are simple and straightforward. I defined a

- "i
SA 4 .,- ~
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ATS Menu Menu

0. Quit
1.- Code Menu
2. Transformer Menu
3. Version Menu
Soeeton?

Code Menu Transformer Menu Version Menui

0 Return to Menu Menu. 0 Return to Menu Menu. There are 24 versions.
1, FOO 1. All transformers given.
2. BAR 2. Those attempted. 0. Return to Menu Menu.

3. BAZ 3. Those which failed. 0. OUit

Enter 0 to quit. 4. Those which applied. or, enter version number.

Selection? I Enter 0 to quit. Selection?

Enter transformer name to view.

Selection? CONOSIMPLIFY

Tra3nsformer Activities Menu

0. Return to Transformer Menu.

1 . View all 5 attempts of COND!SIMPLIFY.

2. Only the 2 attempts that applied.

3. Only the 3 attempts that f ailed.

Enter 0 to quit.

Selection?

FIGLRi 4-2. The Menu systemn.

general mienui display function, DISP-MENU. which takes it titlc, a list of selections. and a list of
mes stoi he displavcd after the selections. This function is used by cach of the menu functions

MF NU-MENU, CODE -MENU, TRANSFORME R-MENU, and VE RSION-MENU. If tile user selccts an
expression froml the Code Menu, that expression " ill he passed to the function WALK. 'I his fujnc-
tion will allow the user to obtain at varicty of in formation stored in thle cel which reprec.ents that
:\pression. If the user selects a transformer from the Irinsfoniner NIcnti.fhe \Nill be gi~en at number
(statistics on the activities of that transformier, and then \,ill he allowed to "walk" aiiy of the
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expressions transformed by that transformer. And finally, if tie user selects a transformation time

from the Version Menu, he will walk the cell which was transformed at that time.

4.4.2. Walking

The function WALK takes any cell and optionally, a version. If no vcrsion is given, he will

begin walking at version 0. The expression will be displayed along with the version number,

the expression's structur, type, and the name of the transformer which created it. The user may
then enter any of the commands described in Chapter Two (and some others besides) to obtain

additional information.

The simplest method of retrieving information from the cells is for the user simply to enter

"+" at each prompt. %hich will display the expression as it occurred in the next version. This has
the effect of simulating the transformation process as it applied to the expression. If, as the user
walks through this process, step by step, he wishes to stop along the way and inquire in more detail
about some transformation, he may easily do so. Entering "w" (for "why"), for example, will cause

the justification for the current transformation to be displayed. Entering "F" (for "failed") will
cause the names of the transformers which were attempted but failed at this point in the process
to be displayed along with their justifications. Entering "'?" will display the menu of commands

available to the user.

If the user has a prctty good idea of what he wants to look at, he may go directly to piece of
code he is interested in by using the "up", "down", "over", and "set version" commands described
in Chapter Two. These allow him to pick up his walk anywhere in time (transformation time) or

space (point in code). If at any time during his walk he wishes to jump down to the sub-expression
which was just transformed, the user may enter the command "j" (for "jump"), rather than the

correct sequence of downs and overs. After exploring around all he wants, he may enter 'r" (for
return) to return to the original expression. And, as a special added feature, the mechanism used
to remember the expression jumped from (a stack!) was generaliied and made available to the user
via the command "m" (for memorize). This adds the current expression and version number to the

stack (stored in CELL- E NVI RONME NT) without juiping anywhere. 'The user may walk anywhere
he likes, and then enter "r" to return the last expression and version which were either jumped

from or "memorized".

4,5. An Example

.tirhl,,n ofthc, ,,stcm is TRANSFORM. I call that here on the list:

I f i
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(COND ((NULL Y) Y)
(T (rO0 (CAT Y)))))

(DEFUN FO0 (X)
(CONS X X))

(DEFUN BAR (FROB)
(COND ((ATOM FROB) (TEST FROB FROB))

((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOD FROB))))))

which is bound to the atom DAFS.

(transform dafs)

Transformation completed.

When the transformation process is complete, the user may enter the menu system, invoking the

query element.

Enter Menu System? (enter y or n) y

THE MENU MENU

0 - Quit

I - Code Menu
2 - Transformer Menu
3 - Version Menu
Selection? (end with CR): I

Upon entering the code menu, the name of each function definition transformed (or an expression
type if the the expression transformed is not a function definition) will be displayed so the user may
select one of them to examine.

CODE MENU

0 - Return to Menu Menu
I - TEST
2 - FO0

3 - BAR

Enter Q to quit.
Selection? (end with CR): 3

"he selected expression is first displayed as it was input to the transformation system.

(DEFUN BAR (FROB)
(COND ((ATOM FROB) (TEST FROB FROB))

((OR FROB (CDR FROB)) (CAR FROB))

(I (CAR (FOe FROB)))))

a
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Version: 0 Expression type: sDEFETTE. Transformer: DEFETTEICREATE

Thc user may type "?' at any time to see a list of possible commands.

d - down to first sub-expression of this cell
u - up to parent expression
o - over to brother expression
j - jump jump to sub-expression just changed.
r - return return to expression last jumped from or memorized

+ - add increment version by one and print
- - subtract decrement version by one and print
s - set set version to number prompted for
n - next go to next version of this cell and print
p - previous go to previous version of this cell and print
1 - last go to last version of this cell and print
m - memorize remember this cell and this version
a - again print current version of expression
h - how many display version numbers for this expression
t - type? what is type of top level expression
v - version? what is version of top level exprssion?
w - why? get justification of current transformation
x - xformer? what transformer produced this cell's current monk.
e - evaluate display the boolean value of this expression
f - fails look at the transformers which failed
b - break break to LISP
q - quit quit to top level
? - huh? prints this info

The user may re-enact the transformation process by entering a "+ at each prompL

(DEFUN BAR (FROB)
(COND ((ATOM FROB)

((LAMBDA (X-2 Y-1)
(COND ((NULL Y-1) Y-1)

(T (FOO (CAT Y-1))))) FROB FROB))

((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 3 Expression type: *DEFETTE* Transformer: FUNCNAMEISUB-DEF

:+t
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(DEFUN BAR (FROB)
(COND ((ATOM FROB)

((LAMBDA (X-2 Y-1)
(COND ((NULL Y-1) NIL)

(T (FOO (CAT Y-1))))) FROB FROB))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 4 Expression type: *ATOM* Transformer: SEXPRIFORM-BVAL

(DEFUN BAR (FROB)
(CONO ((ATOM FROB)

((LAMBDA (X-2 Y-1)
(COND ((NULL Y-1) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT Y-1)))))
F ROB
FROB))

((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 5 Expression type: *DEFETTE* Transformer: FUNCNAME!SUB-DEF

(DEFUN BAR (FROB)
(COND ((ATOM FROB)

((LAMBDA NIL
(COND ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 6 Expression type: .FCALL* Transformer: DEFCALLITR[M

(DEFUN BAR (FROB)
(COND ((ATOM FROB)

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 7 Expression type: eCOND* Transformer: DEFCALLISIMPLIFY
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(DEFUN BAR (FROB)
(COND ((ATOM FROB)

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR T (CDR FROB)) (CAR FROB))

(T (CAR (FOO FROB)))))

Version: B Expression type: *ATOM* Transformer: SEXPRIFORM-BVAL

(DEFUN BAR (FROB)
(COND ((ATOM FROB)

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

((OR T) (CAR FROB))

(T (CAR (FOO FROB)))))

Version: 9 Expression type: *ORs Transformer: ORITRIM

(DEFUN BAR (FROB)
(COND ((ATOM FROG)

(COND ((*JULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

(T (CA FROB))

(T (CAR (FOO FROB)))))

Version: 10 Expression type: *ATOM* Transformer: ORISIMPLIFY

(DEFUN BAR (FROG)
(COND ((ATOM FROG)

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROG)))))

(T (CAR FROB))))

Version: 11 Expression type: *CONDe Transformer: CONDITRIM

No more transformations occurred. This is the final version.

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
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(COND ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

(T (CAR FROB)):)

Version: 11 Expression type: *COND* Transformer: CONDITRIM
:q

If the user requests a non-existent version of the expression, he is warned as shown above, and the

expression is redisplayed. When he is through walking throught the transformation process, the

user quits by entering "q" and is returned to the code menu.

CODE MENU

0 - Return to Menu Menu

I - TEST

2 - FOO

3 - BAR

Enter 0 to quit.
Selection? (end with CR): 0

THE MENU MENU

0 - Quit
I - Code Menu
2 - Transformer Menu
3 - Version Menu
Selection? (end with CR): 3

VERSION MENU

There are 11 versions.
0 - Return to Menu Menu
Q - quit
or, enter version number.
Selection? (end with CR): 7

The version menu allows the user to begin walking the code at a particular point in time and space:
the expression transformed at time 7, in this case. After the code is displayed. the user may enter

any of the usual walking commands. For example, he might enter "u" to see more of the context of
die expression which was transformed.

(COND ((NULL FROB) NIL)

(7 ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB))))
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Version: 7 Expression type: sCOND Transformer: DEFCALLISIMPLIFY

((ATOM FROB)
(COND ((NLILL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

Version: 7 Expression type: ,COND. Transformer: DEFCALLISIMPLIFY

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB))))

Version: 7 Expression type: *CONDo Transformer: DEFCALLISIMPLIFY

To see what the code looked like immediatly before the transformation, the user enters"-".

(COND ((ATOM FROB)
((LAMBDA NIL

(COND
((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))))

((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB))))

Version: 6 Expression type: *FCALL* Transformer: DEFCALLITRIM

The user may explore as much as he desires, and when he quits he will be returned to the menu he
came from.

VERSION MENU

There are It versions.
0 - Return to Menu Menu
Q - quit

or, enter version number.
Selection? (end with CR): 0

*' " .-- ~r-.
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THE MENU MENU

o - Quit
1 - Code Menu
2 - Transformer Menu
3 - Version Menu
Selection? (end with CR): 2

TRANSFORMER MENU

0 - Return to Menu Menu
I - Transformers given in transformation sets
2 - Transformers attempted
3 - Transformers which always failed
4 - Transformers which always succeeded
Enter transformer name to view.
Selection? (end with CR): 2

TIhe transformer menu gives the user acccss to a variety of statishics. Each (if tile categories listed

above will display the number of transformers in that category and give their names.

14 transformers attempted:

(OR!SIMPLIFY ORITRIM
SE APRI!RE PLAC ED

'S SEXPR IBYPASS

ATOM!SUB-ACTARG
SEXPRINOTHING

CONDI SIMPLIFY
CONDI TRIM
DEFCALLISIMPLIFY
DE FCALL ITR IM
FCALL ISIMPLIFY
FCALLI!SIMP-NOT
FUNCNAME ISUB-DEF
SEXPR IFORM-BVAL)

Enter any character to continue: x
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TRANSFORMER MENU

0 - Return to Menu Men.j

I - Transformers given in transformation sets
2 - Transformers attempted
3 - Transformers which failed
4 - Transformers which succeeded
Enter Q to quit.
Enter transformer name to view.

Selection? (end with CR): 4

11 transformers succeeded:

(ORISIMPLIFY ORITRIM
SEXPRIREPLACED
SEXPRIBYPASS
ATOMISUB-ACTARG
SEXPRINOTHING
CONDITRIM
DEFCALLISIMPLIFY
DEFCALLITRIM
FUNCNAMEISUB-DEF

SEXPRIFORM-BVAL)

6 transformers always succeeded:

(ORISIMPLIFY ORITRIM
SEXPRIREPLACED
SEXPRIBYPASS
ATOMISUB-ACTARG
SEXPRINOTHING)

Enter any character to continue: x

TRANSFORMER MENU

0 - Return to Menu Menu

I - Transformers given in transformation sets
2 - Transformers attempted
3,- Transformers which failed

4 - Transformers which succeeded
Enter Q to quit.
Enter transformer name to view.

Selection? (end with CR): or!trim
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If the user enters the name of a transformer, he is tken to the transformer activities menu and
given some statistics on the performance of that transformer.

TRANSFORMER ACTIVITIES MENU

0 - Return to Transformer Menu

1 - Observe all 1 attempts of transformer ORITRIM
2 - Only its 1 successful applications

3 - Only its 0 unsuccessful applications
Enter Q to quit.

Selection? (end with CR): 2

The user may study both successful and unsuccessful applications of the transformer.

The transformer ORITRIM applied at time 9.

Would you like to study the expression? (enter y or n)

(OR T)

Version: 11 Expression type: *OR* Transformer: ORITRIM

(OR t (COR FROB))

Version: 10 Expression type: *ATOM* Transformer: SEXPRIFORM-BVAL
:W

While walking, entering the command "w" (for "why?") will produce a set of justifications for the

transformation.

Expression was transformed because (not (atom x)) => (not (null x)) => x

(ATOM FROB)

Value is NIL because it is within false branch of the cond clause

((ATOM FROB)
(COND ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

:u

. 4.. .... ..
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((OR T (CDR FROB)) (CAR FROB))

Version: 10 Expression type: *ATOM* Transformer: SEXPRIFORM-BVAL

:U

(CONO ((ATOM FROB)
(COND ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR T (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB))))

Version: 10 Expression type: *ATOM* Transformer: SEXPRIFORM-BVAL

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)

AT ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR T) (CAR FROB))
(T (CAR (FOO FROB))))

Version: 11 Expression type: *OR* Transformer: ORITRIM
:q

After walking, the user is returned to the transformer activities menu. From there he may either
inquire more about the same transformer, or return to the transformer menu.

TRANSFORMER ACTIVITIES MENU

I 0 - Return to Transformer Menu
1 - Observe all I attempts of transformer ORITRIM
2 - Only its I successful applications'1 3 - Only its 0 unsuccessful applications
Enter Q to quit.
Selection? (end with CR): 0

TRANSFORMER MENU

0 - Return to Menu Menu

I - Transformers given in transformation sets
2 - Transformers attempted
3 - Transformers which failed
4 - Transformars which succeeded

7
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Enter Q to quit.
Enter transformer name to view.

Selection? (end with Cl): cond!simplify

TRANSFORMER ACTIVITIES MENU

0 - Return to Transformer Menu

I - Observe all 3 attempts of transformer CONDISIMPLIFY

2 - Only its 0 successful applications

3 - Only its 3 unsuccessful applications

Enter Q to quit.

Selection? (end with CR): 3

The transformer CONDISIMPLIFY failed I times during transformation time 3.

Would you like to see the expressions? (enter y or n) y

If the user chooses to view an expression to which a transformer was applied but failed, after

displaying the expression, the names of all transformers which were attempted (but failed) at that
time arc displayed along with their justifications.

Expression I of 1. Continue? (enter y or n) y

(COND ((NULL Y) NIL) (T ((LAMBDA (X-1) (CONS X-1 X-1)) (CAT Y))))

Version: 3 Expression type: *COND* Transformer: CONDICREATE

Transformation time: 3 Expression type: *COND*

CONDITRIM failed to transform the expression because
no predicates were known (maybe last).

CONDISIMPLIFY failed to transform the expression because

patterns didn't match.

SEXPRIFORM-BVAL failed to transform the expression because
the boolean value is unknown.

Done.

Enter any character to continue: x

The transformer CONDISIMPLIFY failed I times during transformation time 6.

Would you like to see the expressions? (enter y or n) a
The transformer CONDISIMPLIFY failed I times during transformation time 12.

Would you like to see the expressions? (enter y or n) y
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Expression 1 of 1. Continue? (enter y or n) y

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
(T (CAR FROB)))

Version: 14 Expression type: ,COND* Transformer: CONDITRIM
Transformation time: 12 Expression type: *COND*

CONDISIMPLIFY failed to transform the expression because
patterns didn't match.

SEXPRIFORM-BVAL failed to transform the expression because
the boolean value is unknown.

Done.
Enter any character to continue: x

If the user quits from any menu, he leaves the menu system and is returned to the driver function,
which allows him to write out the transformed expressions.

TRANSFORMER ACTIVITIES MENU

0 - Return to Transformer Menu
I - Observe all 3 attempts of transformer CONDISIMPLIFY
2 - Only its 0 successful applications
3 - Only its 3 unsuccessful applications
En.,r Q to quit.
Selection? (end with CR): q

Write final output to a file? (enter y or n) y
Enter file name: bkerns:xrormd>

Written.
T

'le file bkerns ; xformd > now contains:

(DEFUN TEST (X Y)
(COND ((NULL Y) NIL)

(T ((LAMBDA (X-1) (CONS X-1 X-1)) (CAT Y)))))

(DEFUN FOO (X) (CONS X X))

(DEFUN BAR (FROB)
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(COND ((ATOM FROB)
(CONO ((NULL FROB) NIL)

(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
(T (CAR FROB))))
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Chapter Five

Conclusions

T WORKS. The code has run successfully with the applicable LISP programs given it, and the

set of optimizing transformers I have written to demonstrate the system have even managed

to significantly improve the execution time of those programs. 'hat is not to say that the s)stem was

all I envisioned, or that it cannot be more...

5.1. Looking Back

It was my intention from the beginning that the transformational component be aule to run

independently of the accountable component (which in my mind meant independently of the cell

representation), simply by rewriting the definitions of XFORM and RESPOND. Clearly, the func-

tions which access pieces of the internal form must be aware of the representation of that form, but

these functions can be written to accept any of a finite number of different representations at any

time, so long as they are able to figure out what that representation is by means of checking type

flags.

I still believe this is possible; however, it is clear that the system as currently implemented

is not able to run with an internal form as simple as just the LISP parse tree. Certain contextual

information is necessary for correct transformation. Without the predicate position inlbormation

currently stored in the internal form of the parse tree, transformers dependent on that informa-

tion cannot apply. Without back-pointer information, for example, it is impossible for a slave

transformer to delete its input expression; it has no access to the father expression from which

93
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to unhook it. Although all such information might have been created and maintained in vari-
ables separate form the internal form and passed from control function to control function (as
the environment and index of bindings were), some of it was more easily stored directly along

with the LISP code to which it pertained. Thus, some sort of augmented parse tree is necessary.
Furthermore, the current system is dependent on the fact that XFORM will install the returned
expression in the internal form (whatever it is) by side-effecting that form, since many system
functions do not "hold on" to their values. This means that the transformation system in its present

implementation cannot transform itself, a fact I truly regret.

It was my further intention that the accountable system be implementable regardless of the
nature of the implementation of the transformational component. While this is true to some degree,

there are nevertheless dependencies I saw no simple way of avoiding. Some of them have been
stated already in Chapter Three: the independence of transformations from the control structure,
the restriction that transformations are called via XFORM and return via RESPOND, etc. In addi-
tion, in order for cell histories to be properly maintained, slave transformers must be used to keep
transformations as localized as possible. Consider the result of consing up a new list of clauses to be
returned by the transformation:

(COND <clauses-i> (T (COND <clauses-2>)))
=> (COND <clauses-I) <clauses-2>)

First of all, since optimizing transformations are required to return equivalent expressions, the
transformer would have to return a conditional expression. Thus, after constructing the new list of
clauses (perhaps by appending <cl auses-I> and <c1 auses-2>), it creates a new conditional
expression via COND I CREATE, which takes a list of clauses and returns a conditional expression.
This function will result in the creation of a new *COND* cell; when XFORM realizes that the
returned expression is neither the same nor a subcell of the input cell, it will correctly assume that

the returned cell is new. The new cell's subtree (the list of clauses) will be installed as the input
cell's new monk, but only after the subcells of the input conditional have been terminated. Since
these same subcells are contained in the newly consed list of clauses, the resulting .COND. cell
consists of an empty clause list.

This example illustrates some of the dependencies of the accountable component on the trans-
formation implementor. The implementor needs to be aware of the five different cases into which
returned objects may fall, and write his transformers accordingly. Correctly maintaining the cell
histories is tricky business, and I have not yet succeeded in making the mechanism robust enough
to survive even the good intentions of uninformed transformation implementors.
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5.2. Looking Ahead

I spent the bulk of my effort for this thesis in gathering information and developing
mechanisms for recording it, rather than using that information. I believe that future work on this
system should emphasize the analysis of the transformation process using the information gathered
by the recording element. I dream of an accountable system, for example, that could reply to
the question "Why didn't this simplifying transformer apply?" with an answer something like
"lHmmm, if only I could have shown the predicate <predicate> to be false, I could have completely
eliminated the computation <hairy expression)". Or to the question "Why did this transformer
apply?", reply "if it hadn't been for this assertion you coded in by hand, none of this whole reduc-
tion would have happened." That is, the query element could not only report the facts, but perform
some sort of analysis using those facts. It involves more carefully itemizing the prerequisites of a
transformation and understanding exactly which of them were met (and why), and which were not.
The "why" needs to be slightly more sophisticated than the justifications of the present system; if
a prerequisite is met, the system should understand the source of the information which satisfied
that prerequisite. Was it an assertion, deduced from context, or always true, and then, what is the
significance of that source?

If a transformation did rot apply, then how close did it come? To answer this question the
system must know not only which prerequisites failed, but be able to suggest ways of satisfying
them. Would an assertion solve the problem, or would such an assertion be a contradiction to cur-
rent information. If a transformation failed because it tried to simplify an OR expression with one
argument, for example, but was applied to an OR expression with two arguments, simply asserting
that the expression had only one arguments would raise a contradiction.

And finally, though I would enjoy providing a super slick user interface for the accountable
transformation system, such improvements are not as dependent on the implementation of this
system so much as they are on the capabilities of the user's terminal and its host system. Just the
same, I dream of display hacks which use multiple cursors and can remember where a particular
s-expression is on the screen. Then instead of having to redisplay an expression to refer to it,
the cursor simply jumps to the correct s-expression already displayed. When the user asks to see
the next version of the displayed expression, the cursor jumps to the sub-expression about to be
transformed, waits for a signal, then pops in the new sub-expression. A status line on the bottom
of the screen keeps the user informed as to the current version, expression type, and transformer
name. Then of course, menus pop up on the screen and a mouse is available to control the cursor.
However, I will leave the implementation of such features to hackers equipped with the necessary
terminals.
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5.3. The Present

As is always the case, I have ,aot accomplished all I had set out to do in this thesis. Though
I believe the present implementation qualifies as an accountable system, it is not what I proposed
that it be originally: a responsible system. To be responsible for its actions, it must have a clearer
understanding of those actions and be able to analyze a situation to the extent that it can propose
to the user the course of action necessary to correct any problems in the transformation process. An
accountable system, however, is a step forward, and does provide a hitherto undeveloped service.
It allows the user to observe the sequence of transformations applied and study their interactions
with each other, it allows him to select any portion of code in any point in time, and it allows him to
control the flow of information returned to him at his requesL
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